16 research outputs found

    Adenine, guanine and pyridine nucleotides in blood during physical exercise and restitution in healthy subjects

    Get PDF
    Maximal physical exertion is accompanied by increased degradation of purine nucleotides in muscles with the products of purine catabolism accumulating in the plasma. Thanks to membrane transporters, these products remain in an equilibrium between the plasma and red blood cells where they may serve as substrates in salvage reactions, contributing to an increase in the concentrations of purine nucleotides. In this study, we measured the concentrations of adenine nucleotides (ATP, ADP, AMP), inosine nucleotides (IMP), guanine nucleotides (GTP, GDP, GMP), and also pyridine nucleotides (NAD, NADP) in red blood cells immediately after standardized physical effort with increasing intensity, and at the 30th min of rest. We also examined the effect of muscular exercise on adenylate (guanylate) energy charge—AEC (GEC), and on the concentration of nucleosides (guanosine, inosine, adenosine) and hypoxanthine. We have shown in this study that a standardized physical exercise with increasing intensity leads to an increase in IMP concentration in red blood cells immediately after the exercise, which with a significant increase in Hyp concentration in the blood suggests that Hyp was included in the IMP pool. Restitution is accompanied by an increase in the ATP/ADP and ADP/AMP ratios, which indicates an increase in the phosphorylation of AMP and ADP to ATP. Physical effort applied in this study did not lead to changes in the concentrations of guanine and pyridine nucleotides in red blood cells

    A pilot study comparing the metabolic profiles of elite-level athletes from different sporting disciplines

    Get PDF
    Background: The outstanding performance of an elite athlete might be associated with changes in their blood metabolic profile. The aims of this study were to compare the blood metabolic profiles between moderate- and high-power and endurance elite athletes and to identify the potential metabolic pathways underlying these differences. Methods: Metabolic profiling of serum samples from 191 elite athletes from different sports disciplines (121 high- and 70 moderate-endurance athletes, including 44 high- and 144 moderate-power athletes), who participated in national or international sports events and tested negative for doping abuse at anti-doping laboratories, was performed using non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography. Multivariate analysis was conducted using orthogonal partial least squares discriminant analysis. Differences in metabolic levels between high- and moderate-power and endurance sports were assessed by univariate linear models. Results: Out of 743 analyzed metabolites, gamma-glutamyl amino acids were significantly reduced in both high-power and high-endurance athletes compared to moderate counterparts, indicating active glutathione cycle. High-endurance athletes exhibited significant increases in the levels of several sex hormone steroids involved in testosterone and progesterone synthesis, but decreases in diacylglycerols and ecosanoids. High-power athletes had increased levels of phospholipids and xanthine metabolites compared to moderate-power counterparts. Conclusions: This pilot data provides evidence that high-power and high-endurance athletes exhibit a distinct metabolic profile that reflects steroid biosynthesis, fatty acid metabolism, oxidative stress, and energy-related metabolites. Replication studies are warranted to confirm differences in the metabolic profiles associated with athletes’ elite performance in independent data sets, aiming ultimately for deeper understanding of the underlying biochemical processes that could be utilized as biomarkers with potential therapeutic implications

    EQ-5D in Central and Eastern Europe : 2000-2015

    Get PDF
    Objective: Cost per quality-adjusted life year data are required for reimbursement decisions in many Central and Eastern European (CEE) countries. EQ-5D is by far the most commonly used instrument to generate utility values in CEE. This study aims to systematically review the literature on EQ-5D from eight CEE countries. Methods: An electronic database search was performed up to July 1, 2015 to identify original EQ-5D studies from the countries of interest. We analysed the use of EQ-5D with respect to clinical areas, methodological rigor, population norms and value sets. Results: We identified 143 studies providing 152 country-specific results with a total sample size of 81,619: Austria (n=11), Bulgaria (n=6), Czech Republic (n=18), Hungary (n=47), Poland (n=51), Romania (n=2), Slovakia (n=3) and Slovenia (n=14). Cardiovascular (20%), neurologic (16%), musculoskeletal (15%) and endocrine/nutritional/metabolic diseases (14%) were the most frequently studied clinical areas. Overall 112 (78%) of the studies reported EQ VAS results and 86 (60%) EQ-5D index scores, of which 27 (31%) did not specify the applied tariff. Hungary, Poland and Slovenia have population norms. Poland and Slovenia also have a national value set. Conclusions: Increasing use of EQ-5D is observed throughout CEE. The spread of health technology assessment activities in countries seems to be reflected in the number of EQ-5D studies. However, improvement in informed use and methodological quality of reporting is needed. In jurisdictions where no national value set is available, in order to ensure comparability we recommend to apply the most frequently used UK tariff. Regional collaboration between CEE countries should be strengthened

    Metabolites related to purine catabolism and risk of type 2 diabetes incidence; modifying effects of the TCF7L2-rs7903146 polymorphism

    Get PDF
    Studies examining associations between purine metabolites and type 2 diabetes (T2D) are limited. We prospectively examined associations between plasma levels of purine metabolites with T2D risk and the modifying effects of transcription factor-7-like-2 (TCF7L2) rs7903146 polymorphism on these associations. This is a case-cohort design study within the PREDIMED study, with 251 incident T2D cases and a random sample of 694 participants (641 non-cases and 53 overlapping cases) without T2D at baseline (median follow-up: 3.8 years). Metabolites were semi-quantitatively profiled with LC-MS/MS. Cox regression analysis revealed that high plasma allantoin levels, including allantoin-to-uric acid ratio and high xanthine-to-hypoxanthine ratio were inversely and positively associated with T2D risk, respectively, independently of classical risk factors. Elevated plasma xanthine and inosine levels were associated with a higher T2D risk in homozygous carriers of the TCF7L2-rs7903146 T-allele. The potential mechanisms linking the aforementioned purine metabolites and T2D risk must be also further investigated.This study was supported by research grant R01-DK-102896 from the National Institutes of Health. The Prevención con DietaMediterránea (PREDIMED) trial was supported by the official funding agency for biomedical research of the Spanish government, the Instituto de Salud Carlos III, through grants provided to research networks specifically developed for the trial [grant RTIC G03/140 (to Ramón Estruch); grant RTIC RD 06/0045 (to Miguel A. Martínez-González)] and through the Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición and by grants from Centro Nacional de Investigaciones Cardiovasculares (grant CNIC 06/2007), the Fondo de Investigación Sanitaria Fondo Europeo de Desarrollo Regional (grants PI04–2239, PI 05/2584, CP06/00100, PI07/0240, PI07/1138, PI07/0954, PI 07/0473, PI10/01407, PI10/02658, PI11/01647, P11/02505, and PI13/00462), the Ministerio de Ciencia e Innovación (grants AGL-2009–13906-C02 and AGL2010–22319-C03), the Fundación Mapfre 2010, Consejería de Salud de la Junta de Andalucía (grant PI0105/2007), the Public Health Division of the Department of Health of the Autonomous Government of Catalonia, Generalitat Valenciana (grants ACOMP06109, GVA-COMP2010–181, GVACOMP2011–151, CS2010-AP-111, and CS2011-AP-042), and the Regional Government of Navarra (grant P27/2011). Genotyping of the TCF7L2-rs7903146 polymorphism was supported by PROMETEO17/2017 from the Generalitat Valenciana, and 538/U/2016 from Fundacio la Marato-TV3. Dr. Christopher Papandreou was supported by a postdoctoral fellowship granted by the Autonomous Government of Catalonia (PERIS 2016-2020 INCORPORACIÓ DE CIENTÍFICAS I TECNÒLEGS, SLT002/0016/00428). Dr Marta Guasch-Ferré was supported by a postdoctoral fellowship granted by the Lilly Foundation European Association of Diabetes (EASD) through the Institut d’Investigacions Sanitàries Pere i Virgili (IISPV), Tarragona, Spain. The authors are indebted to George A. Fragkiadakis (Department of Nutrition & Dietetics, Technological Education Institute of Crete, Greece) for his intellectual contributions to this manuscript

    Substance or behavior as links? Explaining representational judgments

    No full text
    This chapter follows a subjective approach for evaluating representation and examines “citizens’ feeling of being represented” by the national parliament and their representatives. The authors examine this subject in two ways. The first explanatory approach emphasizes the relevance of substantive representation. In short, the more positively citizens perceive themselves to be represented concerning their values, issue preferences or their concerns as a member of a social group, the more positively they will evaluate the institutions and actors of the representational process. The second approach focuses on the behavior of representatives. It predicts representational judgments based on perceptions of MPs’ behavior. The results show that both explanatory approaches are relevant in explaining citizens’ representational judgments, but also suggest that perceptions of substantive representation are slightly more important than perceptions of MPs’ behavior

    Metabolic profiling of elite athletes with different cardiovascular demand

    No full text
    Intensive exercise of elite athletes can lead to physiological alterations in the cardiovascular system in response to increased stroke volume and blood pressure, known collectively as cardiovascular demand (CD). This study aimed to compare metabolic differences in elite athletes with high vs low/moderate CD and to reveal their underlying metabolic pathways as potential biomarker signatures for assessing health, performance, and recovery of elite athletes. Metabolic profiling of serum samples from 495 elite athletes from different sport disciplines (118 high CD and 377 low/moderate CD athletes) was conducted using non-targeted metabolomics-based mass spectroscopy combined with ultra-high-performance liquid chromatography. Results show that DAGs containing arachidonic were enriched in high CD together with branched-chain amino acids, plasminogens, phosphatidylcholines, and phosphatidylethanolamines, potentially indicating increased risk of cardiovascular disease in the high CD group. Gamma-glutamyl amino acids and glutathione metabolism were increased in low/moderate CD group, suggesting more efficient oxidative stress scavenging mechanisms than the high CD group. This first most comprehensive metabolic profiling of elite athletes provides an evidence that athletes with different CD show a unique metabolic signature that reflects energy generation and oxidative stress and potentially places the high CD group at a higher risk of cardiovascular disease. Further studies are warranted for confirmation and validation of findings in other sport groups in light of potential confounders related to limited available information about participants
    corecore