403 research outputs found

    Science for a wilder Anthropocene: synthesis and future directions for trophic rewilding research

    Get PDF
    Trophic rewilding is an ecological restoration strategy that uses species introductions to restore top-down trophic interactions and associated trophic cascades to promote self-regulating biodiverse ecosystems. Given the importance of large animals in trophic cascades and their widespread losses and resulting trophic downgrading, it often focuses on restoring functional megafaunas. Trophic rewilding is increasingly being implemented for conservation, but remains controversial. Here, we provide a synthesis of its current scientific basis, highlighting trophic cascades as the key conceptual framework, discussing the main lessons learned from ongoing rewilding projects, systematically reviewing the current literature, and highlighting unintentional rewilding and spontaneous wildlife comebacks as underused sources of information. Together, these lines of evidence show that trophic cascades may be restored via species reintroductions and ecological replacements. It is clear, however, that megafauna effects may be affected by poorly understood trophic complexity effects and interactions with landscape settings, human activities, and other factors. Unfortunately, empirical research on trophic rewilding is still rare, fragmented, and geographically biased, with the literature dominated by essays and opinion pieces. We highlight the need for applied programs to include hypothesis testing and science-based monitoring, and outline priorities for future research, notably assessing the role of trophic complexity, interplay with landscape settings, land use, and climate change, as well as developing the global scope for rewilding and tools to optimize benefits and reduce human–wildlife conflicts. Finally, we recommend developing a decision framework for species selection, building on functional and phylogenetic information and with attention to the potential contribution from synthetic biology

    Exploring the views of students on the use of Facebook in university teaching and learning

    Get PDF
    Facebook use among students is almost ubiquitous; however, its use for formal academic purposes remains contested. Through an online survey monitoring student use of module Facebook pages and focus groups, this study explores students’ current academic uses of Facebook and their views on using Facebook within university modules. Students reported using Facebook for academic purposes, notably peer–peer communication around group work and assessment – a use not always conceptualised by students as learning. Focus groups revealed that students are not ready or equipped for the collaborative style of learning envisaged by the tutor and see Facebook as their personal domain, within which they will discuss academic topics where they see a strong relevance and purpose, notably in connection with assessment. Students use Facebook for their own mutually defined purposes and a change in student mind- and skill-sets is required to appropriate the collaborative learning benefits of Facebook in formal educational contexts

    Clostridioides difficile binary toxin binding component (cdtb) increases virulence in a hamster model

    Get PDF
    Background Clostridioides difficile is the leading cause of hospital-acquired gastrointestinal infection, in part due to the existence of binary toxin (CDT)-expressing hypervirulent strains. Although the effects of the CDT holotoxin on disease pathogenesis have been previously studied, we sought to investigate the role of the individual components of CDT during in vivo infection. Methods To determine the contribution of the separate components of CDT during infection, we developed strains of C difficile expressing either CDTa or CDTb individually. We then infected both mice and hamsters with these novel mutant strains and monitored them for development of severe illness. Results Although expression of CDTb without CDTa did not induce significant disease in a mouse model of C difficile infection, we found that complementation of a CDT-deficient C difficile strain with CDTb alone restored virulence in a hamster model of C difficile infection. Conclusions Overall, this study demonstrates that the binding component of C difficile binary toxin, CDTb, contributes to virulence in a hamster model of infection

    Numerical simulation of biofilm formation in a microchannel

    Full text link
    The focus of this paper is the numerical solution of a pore-scale model for the growth of a permeable biofilm. The model includes water flux inside the biofilm, different biofilm components, and shear stress on the biofilm-water interface. To solve the resulting highly coupled system of model equations, we propose a splitting algorithm. The Arbitrary Lagrangian Eulerian (ALE) method is used to track the biofilm-water interface. Numerical simulations are performed using physical parameters from the existing literature. Our computations show the effect of biofilm permeability on the nutrient transport and on its growth

    Rapid in situ imaging and whole genome sequencing of biofilm in neonatal feeding tubes: a clinical proof of concept

    Get PDF
    The bacterial flora of nasogastric feeding tubes and faecal samples were analysed for a low-birth weight (725g) neonate EGA 25 weeks in intensive care. Samples were collected at age 6 and 8 weeks of life. Optical coherence tomography (OCT) was used to visualise bacterial biofilms inside the nasogastric feeding tubes. The biofilm was heterogeneously distributed along the tube lumen wall, and had a depth of up to 500µm. The bacterial biofilm and faecal samples included Enterococcus faecalis and Enterobacter hormaechei. Representative strains, recovered from both feeding tubes and faecal samples, were whole genome sequenced using Illumina, Mi-Seq, which revealed indistinguishable strains, each with less than 28 SNP differences, of E. faecalis and E. hormaechei. The E. faecalis strains were from two sequence types (ST191 and ST211) and encoded for a number of traits related to biofilm formation (BopD), adherence (Epb pili), virulence (cps loci, gelatinase, SprE) and antibiotic resistances (IsaA, tetM). The E. hormaechei were all ST106, and encoded for blaACT-15 β–lactamase and fosfomycin resistance (fosA). This proof of concept study demonstrates that bacterial flora within the neonatal feeding tubes may influence the bacterial colonisation of the intestinal tract and can be visualised nondestructively using OCT

    Evaluation of anti-biofilm activity of acidic amino acids and synergy with ciprofloxacin on Staphylococcus aureus biofilms

    Get PDF
    Acidic amino acids, aspartic acid (Asp) and glutamic acid (Glu) can enhance the solubility of many poorly soluble drugs including ciprofloxacin (Cip). One of the mechanisms of resistance within a biofilm is retardation of drug diffusion due to poor penetration across the matrix. To overcome this challenge, this work set to investigate novel counter ion approach with acidic amino acids, which we hypothesised will disrupt the biofilm matrix as well as simultaneously improve drug effectiveness. The anti-biofilm activity of D-Asp and D-Glu was studied on Staphylococcus aureus biofilms. Synergistic effect of combining D-amino acids with Cip was also investigated as a strategy to overcome anti-microbial resistance in these biofilms. Interestingly at equimolar combinations, D-Asp and D-Glu were able to significantly disperse (at 20 mM and 40 mM) established biofilms and inhibit (at 10 mM, 20 mM and 40 mM) new biofilm formation in the absence of an antibiotic. Moreover, our study confirmed L-amino acids also exhibit anti-biofilm activity. The synergistic effect of acidic amino acids with Cip was observed at lower concentration ranges (<40 mM amino acids and <90.54 µM, respectively), which resulted in 96.89% (inhibition) and 97.60% (dispersal) reduction in CFU with exposure to 40 mM amino acids. Confocal imaging indicated that the amino acids disrupt the honeycomb-like extracellular DNA (eDNA) meshwork whilst also preventing its formation

    Use of cultivation-dependent and -independent techniques to assess contamination of central venous catheters: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Catheters are the most common cause of nosocomial infections and are associated with increased risk of mortality, length of hospital stay and cost. Prevention of infections and fast and correct diagnosis is highly important.</p> <p>Methods</p> <p>In this study traditional semiquantitative culture-dependent methods for diagnosis of bacteria involved in central venous catheter-related infections as described by Maki were compared with the following culture-independent molecular biological methods: Clone libraries, denaturant gradient gel electrophoresis, phylogeny and fluorescence in situ hybridization.</p> <p>Results</p> <p>In accordance with previous studies, the cultivation of central venous catheters from 18 patients revealed that <it>S. epidermidis </it>and other coagulase-negative staphylococci were most abundant and that a few other microorganisms such as <it>P. aeruginosa </it>and <it>K. pneumoniae </it>occasionally were found on the catheters. The molecular analysis using clone libraries and sequencing, denaturant gradient gel electrophoresis and sequencing provided several important results. The species found by cultivation were confirmed by molecular methods. However, many other bacteria belonging to the phyla <it>Proteobacteria, Firmicutes, Actinobacteria </it>and <it>Bacteroidetes </it>were also found, stressing that only a minor portion of the species present were found by cultivation. Some of these bacteria are known to be pathogens, some have not before been described in relation to human health, and some were not closely related to known pathogens and may represent new pathogenic species. Furthermore, there was a clear difference between the bacterial species found in biofilm on the external (exluminal) and internal (luminal) side of the central venous catheter, which can not be detected by Maki's method. Polymicrobial biofilms were observed on most of the catheters and were much more common than the cultivation-dependent methods indicated.</p> <p>Conclusion</p> <p>The results show that diagnosis based on molecular methods improves the detection of microorganisms involved in central catheter-related infections. The importance of these microorganisms needs to be investigated further, also in relation to contamination risk from improper catheter handling, as only in vivo contaminants are of interest. This information can be used for development of fast and more reliable diagnostic tools, which can be used in combination with traditional methods.</p
    corecore