1,994 research outputs found
Deficiency of immunity to poliovirus type 3: a lurking danger?
Background: Europe was certified to be polio-free in 2002 by the WHO. However, wild polioviruses remain endemic in India, Pakistan, Afghanistan, and Nigeria, occasionally causing polio outbreaks, as in Tajikistan in 2010. Therefore, effective surveillance measures and vaccination campaigns remain important. To determine the poliovirus immune status of a German study population, we retrospectively evaluated the seroprevalence of neutralizing antibodies (NA) to the poliovirus types 1, 2 and 3 (PV1, 2, 3) in serum samples collected from 1,632 patients admitted the University Hospital of Frankfurt am Main, Germany, in 2001, 2005 and 2010.
Methods: Testing was done by using a standardized microneutralization assay.
Results: Level of immunity to PV1 ranged between 84.2% (95%CI: 80.3-87.5), 90.4% (88.3-92.3) and 87.5% (85.4-88.8) in 2001, 2005 and 2010. For PV2, we found 90.8% (87.5-90.6), 91.3% (89.3-93.1) and 89.8% (88.7-90.9), in the same period. Seroprevalence to PV3 was 76.6% (72.2-80.6), 69.8% (66.6-72.8) and 72.9% (67.8-77.5) in 2001 and 2005 and 2010, respectively. In 2005 and 2010 significant lower levels of immunity to PV3 in comparison to PV1 and 2 were observed. Since 2001, immunity to PV3 is gradually, but not significantly decreasing.
Conclusion: Immunity to PV3 is insufficient in our cohort. Due to increasing globalization and worldwide tourism, the danger of polio-outbreaks is not averted - even not in developed countries, such as Germany. Therefore, vaccination remains necessary
Ingested bovine amniotic fluid enhances morphine antinociception in rats
Ingestion by rats of rat placenta or amniotic fluid enhances opioid-mediated, or partly opioid-mediated, antinociception produced by morphine injection, vaginal or cervical stimulation, late pregnancy, and foot shock. This phenomenon is believed to be produced by a placental\ud
opioid-enhancing factor (POEF). Ingestion by rats of human or dolphin placenta has also been shown to enhance opioid antinociception, suggesting that POEF may be common to many mammalian species. We tested bovine amniotic fluid (BAF) for its capacity to enhance morphine antinociception in female Long-Evans rats, as determined by percentage change from baseline tail-flick latency in response to radiant heat, and we report that 0.50 mL BAF effectively enhanced morphine antinociception but did not by itself produce antinociception. The efficacy of POEF across species suggests that POEF may have been functionally (and structurally) conserved during evolution. Furthermore, the availability of POEF at parturition, as well as its ability to enhance pregnancy-mediated antinociception without\ud
disrupting maternal behavior, offers a tenable explanation for the long-debated ultimate causality of placentophagia
Absolute velocity measurements in sunspot umbrae
In sunspot umbrae, convection is largely suppressed by the strong magnetic
field. Previous measurements reported on negligible convective flows in umbral
cores. Based on this, numerous studies have taken the umbra as zero reference
to calculate Doppler velocities of the ambient active region. To clarify the
amount of convective motion in the darkest part of umbrae, we directly measured
Doppler velocities with an unprecedented accuracy and precision. We performed
spectroscopic observations of sunspot umbrae with the Laser Absolute Reference
Spectrograph (LARS) at the German Vacuum Tower Telescope. A laser frequency
comb enabled the calibration of the high-resolution spectrograph and absolute
wavelength positions. A thorough spectral calibration, including the
measurement of the reference wavelength, yielded Doppler shifts of the spectral
line Ti i 5713.9 {\AA} with an uncertainty of around 5 m s-1. The measured
Doppler shifts are a composition of umbral convection and magneto-acoustic
waves. For the analysis of convective shifts, we temporally average each
sequence to reduce the superimposed wave signal. Compared to convective
blueshifts of up to -350 m s-1 in the quiet Sun, sunspot umbrae yield a
strongly reduced convective blueshifts around -30 m s-1. {W}e find that the
velocity in a sunspot umbra correlates significantly with the magnetic field
strength, but also with the umbral temperature defining the depth of the
titanium line. The vertical upward motion decreases with increasing field
strength. Extrapolating the linear approximation to zero magnetic field
reproduces the measured quiet Sun blueshift. Simply taking the sunspot umbra as
a zero velocity reference for the calculation of photospheric Dopplergrams can
imply a systematic velocity error.Comment: 10 pages, 7 figures, 2 tables, Appendix with 5 figure
Self-organization of hydrophobic soil and granular surfaces
Soil can become extremely water repellent following forest fires or oil spillages, thus preventing penetration of water and increasing runoff and soil erosion. Here the authors show that evaporation of a droplet from the surface of a hydrophobic granular material can be an active process, lifting, self-coating, and selectively concentrating small solid grains. Droplet evaporation leads to the formation of temporary liquid marbles and, as droplet volume reduces, particles of different wettabilities compete for water-air interfacial surface area. This can result in a sorting effect with self-organization of a mixed hydrophobic-hydrophilic aggregate into a hydrophobic shell surrounding a hydrophilic core
Effect of Particle Size on Droplet Infiltration into Hydrophobic Porous Media As a Model of Water Repellent Soil
The wettability of soil is of great importance for plants and soil biota, and in determining the risk for preferential flow, surface runoff, flooding,and soil erosion. The molarity of ethanol droplet (MED) test is widely used for quantifying the severity of water repellency in soils that show reduced wettability and is assumed to be independent of soil particle size. The minimum ethanol concentration at which droplet penetration occurs within a short time (≤10 s) provides an estimate of the initial advancing contact angle at which spontaneous wetting is expected. In this study, we test the assumption of particle size independence using a simple model of soil, represented by layers of small (0.2–2 mm) diameter beads that predict the effect of changing bead radius in the top layer on capillary driven imbibition. Experimental results using a three-layer bead system show broad agreement with the model and demonstrate a dependence of the MED test on particle size. The results show that the critical initial advancing contact angle for penetration can be considerably less than 90° and varies with particle size, demonstrating that a key assumption currently used in the MED testing of soil is not necessarily valid
The photospheric solar oxygen project: III. Investigation of the centre-to-limb variation of the 630nm [OI]-NiI blend
The solar photospheric abundance of oxygen is still a matter of debate. For
about ten years some determinations have favoured a low oxygen abundance which
is at variance with the value inferred by helioseismology. Among the oxygen
abundance indicators, the forbidden line at 630nm has often been considered the
most reliable even though it is blended with a NiI line. In Papers I and Paper
II of this series we reported a discrepancy in the oxygen abundance derived
from the 630nm and the subordinate [OI] line at 636nm in dwarf stars, including
the Sun. Here we analyse several, in part new, solar observations of the the
centre-to-limb variation of the spectral region including the blend at 630nm in
order to separate the individual contributions of oxygen and nickel. We analyse
intensity spectra observed at different limb angles in comparison with line
formation computations performed on a CO5BOLD 3D hydrodynamical simulation of
the solar atmosphere. The oxygen abundances obtained from the forbidden line at
different limb angles are inconsistent if the commonly adopted nickel abundance
of 6.25 is assumed in our local thermodynamic equilibrium computations. With a
slightly lower nickel abundance, A(Ni)~6.1, we obtain consistent fits
indicating an oxygen abundance of A(O)=8.73+/-0.05. At this value the
discrepancy with the subordinate oxygen line remains. The derived value of the
oxygen abundance supports the notion of a rather low oxygen abundance in the
solar hotosphere. However, it is disconcerting that the forbidden oxygen lines
at 630 and 636nm give noticeably different results, and that the nickel
abundance derived here from the 630nm blend is lower than expected from other
nickel lines.Comment: to appear in A&
Comb-calibrated solar spectroscopy through a multiplexed single-mode fiber channel
We investigate a new scheme for astronomical spectrograph calibration using
the laser frequency comb at the Solar Vacuum Tower Telescope on Tenerife. Our
concept is based upon a single-mode fiber channel, that simultaneously feeds
the spectrograph with comb light and sunlight. This yields nearly perfect
spatial mode matching between the two sources. In combination with the absolute
calibration provided by the frequency comb, this method enables extremely
robust and accurate spectroscopic measurements. The performance of this scheme
is compared to a sequence of alternating comb and sunlight, and to absorption
lines from Earth's atmosphere. We also show how the method can be used for
radial-velocity detection by measuring the well-explored 5-minute oscillations
averaged over the full solar disk. Our method is currently restricted to solar
spectroscopy, but with further evolving fiber-injection techniques it could
become an option even for faint astronomical targets.Comment: 21 pages, 11 figures. A video abstract for this paper is available on
youtube. For watching the video, please follow
https://www.youtube.com/watch?v=oshdZgrt89I . The video abstract is also
available for streaming and download on the related article website of New
Journal of Physic
Experience in hepatic resection for metastatic colorectal cancer: Analysis of clinical and pathologic risk factors
Background. The selection of patients for resective therapy of hepatic colorectal metastases remains controversial. A number of clinical and pathologic prognostic risk factors have been variably reported to influence survival. Methods. Between January 1981 and December 1991, 204 patients underwent curative hepatic resection for metastatic colorectal cancer. Fourteen clinical and pathologic determinants previously reported to influence outcome were examined retrospectively. This led to a proposed TNM staging system for metastatic colorectal cancer (mTNM). Results. No operative deaths occurred (death within 1 month). Overall 1-, 3-, and 5-year survivals were 91%, 43%, and 32%, respectively. Gender, Dukes' classification, site of primary colorectal cancer, histologic differentiation, size of metastatic tumor, and intraoperative blood transfusion requirement were not statistically significant prognostic factors (p > 0.05). Age of 60 years or more, interval of 24 months or less between colorectal and hepatic resection, four or more gross tumors, bilobar involvement, positive resection margin, lymph node involvement, and direct invasion to adjacent organs were significant poor prognostic factors (p < 0.05). In the absence of nodal disease or direct invasion, patients with unilobar solitary tumor of any size, or unilobar multiple tumors of 2 cm or smaller (stages I and II) had the highest survival rates of 93% at 1 year, 68% at 3 years, and 61% at 5 years. Unilobar disease with multiple lesions greater than 2 cm (stage III) resulted in 1-, 3-, and 5-year survivals of 98%, 45%, and 28%, respectively. Patients with bilobar involvement (multiple tumors, any size, or a single large metastasis) (stage IVA) had survival rates of 88% at 1 year, 28% at 3 years, and 20% at 5 years (p < 0.00001). Patients with nodal involvement or extrahepatic disease (stage IVB) experienced the poorest outcome with 1-, 3- , and 5-year survivals of 80%, 12%, and 0%, respectively (p < 0.00001). Conclusions. The proposed mTNM staging system appears to be useful in predicting the outcomes after hepatic resection of metastatic colorectal tumors
Semimetalic antiferromagnetism in the half-Heusler compound CuMnSb
The half-Heusler compound CuMnSb, the first antiferromagnet (AFM) in the
Mn-based class of Heuslers and half-Heuslers that contains several conventional
and half metallic ferromagnets, shows a peculiar stability of its magnetic
order in high magnetic fields. Density functional based studies reveal an
unusual nature of its unstable (and therefore unseen) paramagnetic state, which
for one electron less (CuMnSn, for example) would be a zero gap semiconductor
(accidentally so) between two sets of very narrow, topologically separate bands
of Mn 3d character. The extremely flat Mn 3d bands result from the environment:
Mn has four tetrahedrally coordinated Cu atoms whose 3d states lie well below
the Fermi level, and the other four tetrahedrally coordinated sites are empty,
leaving chemically isolated Mn 3d states. The AFM phase can be pictured
heuristically as a self-doped CuMnSb compensated semimetal
with heavy mass electrons and light mass holes, with magnetic coupling
proceeding through Kondo and/or antiKondo coupling separately through the two
carrier types. The ratio of the linear specific heat coefficient and the
calculated Fermi level density of states indicates a large mass enhancement
, or larger if a correlated band structure is taken as the
reference
- …
