2,832 research outputs found
The Influence of pH Variation on CooA Activity
CooA, a CO-sensing heme protein, acts as a transcriptional activator of CO-metabolizing proteins in bacteria such as Rhodospirillum rubrum and Carboxydothermus hydrogenoformans through sequence-specific DNA binding. Previous research indicated a reduced iron center and CO gas were necessary for CooA to achieve its active conformation and bind DNA. To determine if other reaction conditions facilitate CooA activation, the role of pH on CooA function was tested. Specifically, a fluorescence anisotropy assay was employed to measure possible Fe(III) CooA DNA binding from pH 3 - 12. Interestingly, CooA was observed to bind DNA without CO at acidic conditions, with optimal binding observed at pH ~3. These results are discussed in light of the normal CO-dependent activation mechanism of CooA proteins
Classification of journal surfaces using surface topography parameters and software methods to compensate for stylus geometry
Measurements made with a stylus surface tracer which provides a digitized representation of a surface profile are discussed. Parameters are defined to characterize the height (e.g., RMS roughness, skewness, and kurtosis) and length (e.g., autocorrelation) of the surface topography. These are applied to the characterization of crank shaft journals which were manufactured by different grinding and lopping procedures known to give significant differences in crank shaft bearing life. It was found that three parameters (RMS roughness, skewness, and kurtosis) are necessary to adequately distinguish the character of these surfaces. Every surface specimen has a set of values for these three parameters. They can be regarded as a set coordinate in a space constituted by three characteristics axes. The various journal surfaces can be classified along with the determination of a proper wavelength cutoff (0.25 mm) by using a method of separated subspace. The finite radius of the stylus used for profile tracing gives an inherent measurement error as it passes over the fine structure of the surface. A mathematical model is derived to compensate for this error
The effect of vacuum polarisation on muon-proton scattering at small energies and angles
We give a compact expression for the unpolarised differential cross section
for muon-proton scattering in the one photon exchange approximation. The effect
of adding the vacuum polarisation amplitude to the no-spin-flip amplitude for
one photon exchange is calculated at small energies and scattering angles and
is found to be negligible for present experiments.Comment: 6 pages, one figur
Epidemiology of coagulase-negative staphylococci intramammary infection in dairy cattle and the effect of bacteriological culture misclassification
A new approximation scheme in quantum mechanics
An approximation method which combines the perturbation theory with the
variational calculation is constructed for quantum mechanical problems. Using
the anharmonic oscillator and the He atom as examples, we show that the present
method provides an efficient scheme in estimating both the ground and the
excited states. We also discuss the limitations of the present method.Comment: 14pages, to be published in Eur. J. Phy
COMPTEL solar flare observations
COMPTEL as part of a solar target of opportunity campaign observed the sun during the period of high solar activity from 7-15 Jun. 1991. Major flares were observed on 9 and 11 Jun. Although both flares were large GOES events (greater than or = X10), they were not extraordinary in terms of gamma-ray emission. Only the decay phase of the 15 Jun. flare was observed by COMPTEL. We report the preliminary analysis of data from these flares, including the first spectroscopic measurement of solar flare neutrons. The deuterium formation line at 2.223 MeV was present in both events and for at least the 9 Jun. event, was comparable to the flux in the nuclear line region of 4-8 MeV, consistent with Solar-Maximum Mission (SSM) Observations. A clear neutron signal was present in the flare of 9 Jun. with the spectrum extending up to 80 MeV and consistent in time with the emission of gamma-rays, confirming the utility of COMPTEL in measuring the solar neutron flux at low energies. The neutron flux below 100 MeV appears to be lower than that of the 3 Jun. 1982 flare by more than an order of magnitude. The neutron signal of the 11 Jun. event is under study. Severe dead time effects resulting from the intense thermal x-rays require significant corrections to the measured flux which increase the magnitude of the associated systematic uncertainties
New Forms of Deuteron Equations and Wave Function Representations
A recently developed helicity basis for nucleon-nucleon (NN) scattering is
applied to th e deuteron bound state. Here the total spin of the deuteron is
treated in such a helicity representation. For the bound state, two sets of two
coupled eigenvalue equations are developed, where the amplitudes depend on two
and one variable, respectively. Numerical illustrations based on the realistic
Bonn-B NN potential are given. In addition, an `operator form' of the deuteron
wave function is presented, and several momentum dependent spin densities are
derived and shown, in which the angular dependence is given analytically.Comment: 19 pages (Revtex), 9 fig
Batch fecundity and an attempt to estimate spawning frequency of king mackerel (Scomberomorus cavalla) in U.S. waters
- …
