Classification of Journal Surfaces Using Surface Topography Parameters and Software Methods to Compensate for Stylus Geometry

Cheng-Jih Li, Warren R DeVries, and Kenneth C Ludema
University of Mıchigan

April 1983

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Lewis Research Center
Under Cooperative Agreement NCC 3-11

LIBRARY COPY

for
U.S. DEPARTMENT OF ENERGY

Conservation and Renewable Energy

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof

Printed in the United States of America

Avarlable from

National Technical Information Service
U S Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
NTIS price codes ${ }^{1}$
Printed copy A04
Microfiche copy A01

1Codes are used for pricing all publications The code is determined by the number of pages in the publication Information pertaining to the pricing codes can be found in the current issues of the following publications, which are generally available in most libraries Energy Research Abstracts (ERA), Government Reports Announcements and Index (GRA and 1), Scientific and Technical Abstract Reports (STAR), and publicatıon, NTIS-PR-360 available from NTIS at the above address

Classification of Journal Surfaces Using Surface Topography Parameters and Software Methods to Compensate for Stylus Geometry

Cheng-Jih LI, Warren R DeVries, and Kenneth C Ludema University of Mıchigan
Ann Arbor, Michıgan 48109

April 1983
Prepared for National Aeronautics and Space Admınistration Lewis Research Center
Cleveland, Ohıo 44135
Under Cooperative Agreement NCC 3-11
for
U S DEPARTMENT OF ENERGY
Conservation and Renewable Energy
Office of Vehicle and Engine R\&D
Washington, D C 20545
Under Interagency Agreement DE-Al01-80CS50194

CLASSIFICATION OF JOURNAL SURFACES USING SURFACE TOPOGRAPHY PARAMETERS AND SOFTWARE METHODS TO COMPENSATE FOR STYLUS GEOMETRY
 Chen-Jıh Li, Warren R. DeVrıes, and Kenneth C. Ludema Unıversity of Mıchigan Ann Arbor, Mıchigan

SUMMARY

This report deals with the statıstıcal characteristics of surface profıles measured with a stylus tracer; there definitions, an application and enhancement using software to compensate for stylus geometry effects. After defining some of the common helght sensitive profile statistics, they are used classify the journal surfaces of diesel engine crank shafts produce by manufacturing methods that yleld significantly different service life.

Software methods are presented to try to reconstruct a surface profile from dıscrete measurements by accounting for the finite radius of the stylus tracer.

Results indicate that using three parameters: RMS roughness, skewness and kurtosis, and a classification method termed "separated subspaces", the journal surfaces produced by different combinations of grinding and lapping can be classified. The work on compensating for stylus geometry, which is verified using both mathematical simulation and experimental measurements, indicates that, at least for simple profile geometries compensation for stylus radıus' can reduce errors to less than . 4%.

1. INTRODUCTION

Before 1950 surfaces were generated and refined exclusively by traditional mechanical methods (e.g. cutting, grinding, honing, lappıng and polıshing). The need to machıne the high temperature alloys used in jet engines stımulated the development of many additional materıal removal techniques. These nontraditional methods include electrochemıcal cutting and grinding, spark discharge machining, electron beam, ion beam, laser and plasma arc removal technıques [1]. Thus in the early stages, finısh was specifled by the process, but with these non-traditional methods as the arlving force, more quantıtatıve methods of specification were needed.

At the submicroscopic level most surfaces are far from smooth and plane, they have the characteristics of a range of mountains with peaks and valleys. A number of causes contribute to the roughness. First is the mark left by the tool or grit ltself, which will be of a perlodic nature for cutting process and more random for abraslve or nontraditional processing methods. Second there is a finer structure due to tearing of the metal during machining, the debris of the built-up edge and the small irregularıtıes in the shape at the tip of the tool. Finally, especially in alloy steels there may be microscopic cracks at grain boundarıes [2]. Thus the resulting surface is a function of the process used, the conditions at the cutting edge and the material being processed.

These characterıstics of surface roughness are very important in many respects from both a scientıfic and industrial point of view. Particularly in contact problems that
involve wear, lubrication, heat transfer and sealing, surface roughness plays a role [3-12]. For example, in forced convection heat transfer, it is well known that the heat transfer rate can be enhanced through proper changes of surface roughness [8]. Also the rate of fouling or the deposition of scale on the surfaces affects the useful life of the heat transfer equapment significantly [7]. A large number of engineering components and devices are directly dependent upon surface characteristics for their performance. These include both sliding and rolling bearıngs of all types, seals, brakes, clutches, joints, sprıngs, fasteners, cams, splines and gears, particularly if the requirements of interchangeabilıty of machıne elements considering the fits, wear, lubrication, etc., that are involved [13].

For some of these applications there is an optimum surface. For instance, the cylinder walls of an internal combustion engine may be too smooth to allow rapid spreading and wetting by oll or too rough to enable the surface asperities to support the applıed loads without galling [13]. The topic of quantitatively expressing the extent of roughness of the surface is really worthy of careful study. Specıfically, it would be desirable to characterize the form of a surface, be able to quantitatively relate this form to the function of the surface, and then to know exactly what processes can be used to generate this form.

The ways of measurement of the surface profiles can be categorızed as follows:
a. Non-Contact Profile Measurement Methods [14]:

One example $1 s$ optical methods, which allow the
specimen to be investigated without destroying it or subjecting it to a strain or wear. Other methods that have been used involve capacitance or pneumatics as the measurement principle.
b. Contact Profile Measurement Methods:

Instruments with stylus tracers in mechanical contact with the surface are the most common way of measuring surface topography. Stylus methods have a shortcoming in that there exısts an error from the influence of stylus geometry, but it does provide an immediate numerical characterızation of a surface, so it is used widely in industry, is the most direct measurement of geometry and is used in U.S. Standards [15].

Statıstıcal considerations are intimately tied up with the measurment of surfaces. Statıstical parameters are used to characterıze different surfaces with the expectation that there wlll be little varlation in these parameters over the surface [16]. Varıous modificatıons and improved surface finish parameters have been proposed by Reason [17], Pesante [18], Ehrenreich [19], Teague [20] and others.

This report concentrates on measurements made with stylus devices that are dıgıtızed representations of a stylus trace. As a starting point, some of the common parameters used to characterıze the form of a profıle trace are defined. This is followed by an application of these parameters to the problem of characterizing the journal surfaces of crank shafts that are produced by dıfferent manufacturing methods and have vastly
different life in service. The final piece of work develops new methods for deconvolving or compensating for the effects of stylus geometry on the measurements made with a tracer.
II. STATISTICAL CONCEPTS FOR DESCRIBING TYPICAL SURFACE

TOPOGRAPHY PARAMETERS

The most common surface finısh measurement varıable is roughness height, which is the numerical value of the average distance, in micro-inches or mıcrons, of each polnt on the surface profile from a defined line called the reference center line. Once this reference center line is set, each roughness helght measurement, Y_{1} for $1=1, \ldots, N$, of the surface are referenced normal to this line. All computations of the characteristics of the profile are based on the measured roughness helght. Obviously it is essentıal to define a reference center line properly.

There are several methods that have been used in defining the reference center line $[21,22]$, they are:
a. Envelope Method (E - System):

Imagıne that there $1 s$ a large circle (often 25 mm in diameter) rolling over a surface, and regard the locus of the center of this circle as the reference center line. This method is used in some European countries.
b. rien Point Average Method:

This method requires finding the 5 highest peaks and 5 lowest valleys of the profile, and calculating the average value of these ten points. This average value is regarded as the reference center line.
c. Mean Jine Method:

The mean line is selected so that on each side of it the areas enclosed by the profile are equal, i.e. the centroid of the profile. For discrete profiles, the area for each profile is assumed to be a rectangle of height Y_{i} and with a constant width Δx. It turns out that we can use an alternative definition for easy computation which takes the reference center line as a line parallel to the general direction of the profile such that the average helght of the profile on one side of it ls equal to the average height on the other side. With the previous assumptions, the mean line in this case is simply the average, i.e. if the height of the point at X_{i} is Y_{1}, the mean can be mathematically expressed as:

$$
\begin{equation*}
\bar{Y}=\frac{1}{N} \sum_{i=1}^{N} Y_{i} \tag{1}
\end{equation*}
$$

This method $1 s$ the standard in T.S., Canada and Britaln.
d. Least Squares Line Method:

The well known formulas for linear regression are used to get the least square lıne, whlch is regarded as the reference center line. With this method the reference line is a function of position as given by:

$$
\begin{equation*}
\overline{\mathrm{Y}}_{i}=a+b x_{i} \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
\mathrm{a}= & \text { the intercept of the least square line with } \\
& \text { the } y \text { axis, and } \\
\mathrm{b}= & \text { the slope of the least square line } \tag{3}
\end{align*}
$$

In practice, the Envelope Method is not used very often because of the difficulty of determining the locus. The Ten Point Average Line Method leads to a reference center line below the major surface features for deeply pıtted surfaces. As a result it is common that people often use the Mean Jine Method and the Least Square Line Method.

The Mean Line Method gives a "horizontal" reference line which cannot compensate for the "tilt" in the profıle, whereas the Least Square Line Method does compensate for tilt in the experimental setup.

Now, let us have a brief survey of the statistics which are most commonly used to represent the properties of a measured surface. All of these parameters are based on a profile like that shown in Fig. (la). They refer to deviations from a reference line based on one of the methods previously described. Therefore, all computations are made using:

$$
\begin{equation*}
y_{1}=Y_{1}-\bar{Y} \tag{4}
\end{equation*}
$$

where \bar{Y} is the reference line, Y_{1} is a measured value and Y_{1} ls the deviation from the reference. This transformation leads to another discrete profile which may be interpreted as shifting the measured profile to a zero mean level, as shown in Fig. (lb).

HEIGHT PARAMETERS:
Measures of dispersion show the degree of spread of the data around the central value. The most common one is standard deviation, or RMS roughness. Based on deviations from the mean given by Eq. (4), the RMS roughness

9

(b)

skewness

Figure 1. Schematically illustrating the statistical parameters.

1s defined as:

$$
\begin{equation*}
R_{q}=\sqrt{\frac{1}{N} \sum_{1=1}^{N} Y_{i}^{2}} \tag{5}
\end{equation*}
$$

Today, because of its greater simplicıty, arithmetıc averaging is much more commonly used, and is, in fact, the American Standard for roughness. Arithmetic average (AA) roughness is defined as:

$$
\begin{equation*}
R_{a}=\frac{1}{N} \sum_{i=1}^{N}\left|y_{1}\right| \tag{6}
\end{equation*}
$$

HEIGHT DISTRIBUTION PARAMETERS:
There are two parameters which were proposed by AlSalihi [23] to describe height distribution, they are skewness and kurtosis. Whale they are used in characterization of surface profiles, they are well known descriptors of statıstical distributions.

Skewness means lack of symmetry, and measures of skewness show the extent to which the distribution departs from symmetry. Skewness is defined as:

$$
\begin{equation*}
\gamma_{1}=\frac{1}{N} \sum_{1=1}^{N}\left(\frac{Y_{1}}{R_{q}}\right)^{3} \tag{7}
\end{equation*}
$$

Refer to Fig. (lc). If $\gamma_{1}=0$, the distribution is symmetric, such as a Gaussian distribution, shown as curve 1. If $\gamma_{1}>0$, the distribution is skewed to a higher level as shown by curve 2. Whereas, if $\gamma_{1}<0$, the distribution is skewed to a lower level as shown in curve 3. The positive skewed surfaces $\left(\gamma_{1}>0\right)$ is thought to be more suitable for load carrying than surfaces negatıvely skewed.

Kurtosis may be defined as "peakness". A measure of kurtosis serves to differentiate between a flat distribution curve and a sharply peaked curve. In other words, it enables the squareness of the profile to be descrıbed. Kurtosis is defined as:

$$
\begin{equation*}
\gamma_{2}=\frac{1}{N} \sum_{i=1}^{N}\left(\frac{Y_{1}}{R_{q}}\right)^{4} \tag{8}
\end{equation*}
$$

For a Gaussian distribution, γ_{2} is equal to 3 , which is shown as curve 1 in Fig. (ld). If $\gamma_{2}>3$, the distrıbution is more sharply peaked than Gaussian as shown in curve 2, and is defined as leptokurtic. If $\gamma_{2}<3$, the distribution is flatter than Gaussian as shown in curve 3 and is defıned as platykurtic.

LENGTH SENSITIVE PARAMETERS:
One parameter in this group is the autocorrelation function, which was fırst noticed by Wormersley and Hopkins [24] as a tıme serıes. However it was Peklenık [25] who first applıed it to classıficatıon.

The autocorrelation gives an estumate of the relation between y_{1} and y_{1-k}, which are the values of y_{i} at horızontal intervals of length, $k(\Delta x)$. Autocorrelation $1 s$ defined as:

$$
\begin{equation*}
\hat{\rho}_{k}=\frac{\sum_{1=k+1}^{N} Y_{i} Y_{1-k}}{\sum_{i=1}^{N} Y_{1}^{2}} \tag{9}
\end{equation*}
$$

In addition to the autocorrelation, the spectrum,
which is the Fourier transform of the autocorrelation, is of ten used. Often the spectrum is most effective when dealing with highly perıodic profiles.

The procedure used to make profile measurements involves digatizing the analog stylus deflections, and storing this data. The setup used is typical of many laboratory installations, this one using a Bendix Proficorder and a Digital Equipment Corporatıon (DEC) LSI-11/2 microcomputer.

Figure (2) shows the stylus transducer setup that is used to convert the vertical motion of the diamond stylus, with radius r, to an analog voltage. The lever arrangement causes the core of a linear variable differential transformer (IJVDT), to move. The resulting A.C. signal is demodulated to provide a D.C. voltage proportional to the deflection of the stylus tip. The stylus traverses at a linear velocity V, which is assumed to be constant. To assure a straight path for this motion, the stylus is referenced to an optical flat. However, this straight path does not assure that the stylus has a path parallel to the surface being measured, so that it is possible to have a "tilt" in the measured profile.

The data acquisition setup is shown in Fig. (3), and is designed to provide an analog trace of the surface, as well as a digitized trace. A Brush recorder is used to indicate the analog trace on one channel, with the signal coming directly from the tracer amplıfier. Between the amplifier and the analog to digital converter (ADC) on the microcomputer, an actıve low pass fılter is installed to avoid aliasıng as explained below. The aliasing problem can best be explained in terms of the sampling interval, Δx. If we sample at points which are too

Fıgure 2. Schematically 1 llustrating the (a) linear varıable differential transformer, (b) locus of stylus tip when measuring.

Figure 3. Schematically illustrating the set-up.
close together, it will yıeld correlated and highly redundant data, and thus unnecessarily ancrease the labor and cost of calculations. On the other hand, sampling at points which are too far apart will lead to confusion between the low and high frequency components in the original data. This later problem is called aliasıng.

Consider a continuous record which is uniformly sampled with h seconds time interval, l.e. a sampling rate of $1 / h$ samples per second. If the velocity of stylus motion $1 s \mathrm{~V}$, the sampling interval will be $\Delta x=V \cdot h$, refer to Fig. (2). However, we need at least two samples per cycle to define a frequency component in the original data. Hence, the highest frequency which can be defined by sampling at a rate of $1 / h$ samples per second is $1 / 2 \mathrm{~h} \mathrm{~Hz}$. Frequencies in the orıganal data above $1 / 2 \mathrm{~h} \mathrm{~Hz}$ wall be folded back into the frequency range from 0 to $1 / 2 \mathrm{~h} \mathrm{~Hz}$, and be confused with data in this lower range. This cutoff frequency is called the Nyquist frequency. To be on the safe side the filter break frequency is set at $1 / 3 \mathrm{~h}$.

The digitized signal is sent back to the second channel of the Brush recorder using a digital to analog converter (DAC) so that it can be visually compared with the incoming analog sıgnal. For subsequent analysis, the dıgitızed data is also stored on a floppy disk.

Once the data on a profile has been acquired, it is conditioned as follows. The trend is defined as any frequency component whose period is longer than the record length. This type of component cannot be removed by highpass digital filtering
as will be mentioned later. Here we chose the least squares procedures, Eqs. (2) and (3), to remove the linear trend, which usually arises from "tılt" or lack of parallelism between the optıcal flat and surface beıng measured.

To remove waviness often associated with errors of form, hıghpass fılterıng, lıke that often done with wavelength cutoff analog carcuitry, is used. This can be done by fast Fourıer transform because only a finite range Fourier series or transform can actually be computed with digıtızed data, and this finıte range can always be considered as the perıod of an associated Fourıer serıes. Digital filterıng methods are used to filter out the lower frequencies, (lonq wavelength waviness) of the profile by choosing a wavelength cutoff.

Once this is done, the profile statistics described in Section II can be computed.

OF JOURNAL SURFACES ON CRANK SHAFTS
The normal finıshing steps on journal surfaces involves grinding and lapping. The relative direction of these two operations ıs felt to be critıcal. For example, if the crank will rotate clockwise, then the grinding should be done counterclockwise followed by lapping in a clockwise direction. One can speculate that this order could tend to minimize the directional tendency of asperity tips, l.e. the grinding may give the asperıties a dırection and if lapping works on the tip of the asperity it will flatten the asperity and shıft material in the opposite direction. It is said that there $1 s$ quite a difference in bearing life when using the journal bearings made through different manufacturing methods. For example, the life of the journals which are ground and lapped in the same direction is 500 working hours, whereas the life of those which are ground and lapped in the opposite direction is about 5000 working hours. The effect of the finishing steps is so great as to be worthy of studying.

An experiment was made by applying the previous ideas on the measurement of surface profiles to several journal surfaces of diesel engıne crank shafts. An addıtional purpose was to determıne if there is a parameter or several parameters that can be used to classify the journal surfaces according to their manufacturing steps and the relative directions of grinding and lapping.

SAMPLE SPECIMENS:
Coupons to be measured were cut out of the journal surfaces of new engıne crankshafts, some from the main bearing surfaces and others from the connecting rod throw. Figure (4), illustrates where the various samples are located on a typical crank origınally.

Three sets of specimens, from three cranks, were made available: ground only and unlapped (U), ground and lapped in the same direction as grinding (LSD), and ground and lapoed in the direction opposite to grinding (LOD). Table 1 groups the samples according to their manufacturing procedure. MEASURING:

The set up of this experiment is the same as shown schematically in Fig. (3). Surface profıle traces were made using a Bendix Proficorder equipped with a stylus having a $12.7 \mu \mathrm{~m}$ radıus. The analog output of the stylus displacement was digitized, bypassing the analog fılters used for setting the wavelength cutoff. A Krohn-Hite 3323 active filter acted as an anti-alıasing fılter. Based on the traverse speed of the stylus, $.3175 \mathrm{~mm} / \mathrm{s}$, and selection of a spatial samole interval, $\Delta \mathrm{X}=.005 \mathrm{~mm}$, the temporal rate is determıned and the break frequency for the antıaliasing filter was selected on the conservatıve side to be one third the sampling frequency.

Usıng the condıtions mentioned above, 4 longitudınal traces were made at different positions on each journal coupon. In each case, 512 points were sampled in each trace, for a total stroke of slıghtly more than 2.5 mm .

Figure 4. Schematically illustrating the location of the samples on a crankshaft.

!	Manufacturins Frocedure	Srecimen Identification
!	Ground onily	E4, [14,E4,E2
;	Urilapred (U)	
!	Ground and	
;	Lapped 1ri Same	$\mathrm{C4,C3,C1}$
!	Hirertion (LSD)	
;	Ground and	
;	Lamred 1\% Opfosite	F4,G4,F3,G1,F2
;	Hirection (lon)	

[^0]These data were analyzed using the least squares reference line, Eq. (2), and the statistical parameters yiven by Eqs. (5) through (8) were computed. Reference [27] gives complete details on the computational methods used. THE IDEA OF THE "RMS - SKEWNESS - KURTOSIS SPACE":

By comparing all the statıstıcal parameters listed in Tables (2.1-2.3), it is true that the "ground only" specimen can be easily recognized from the other two kinds of specimen by just looking at the arithmetic averaging or RMS roughness. Owing to the simılarity between arithmetic average and RMS, we choose only one of them, Rq, as a characterıstic. The remaining parameters to describe the characteristics of the profile are Rq , skewness and kurtosis. Because every specimen has a set of values, we can regard it is a set of coordinates in a space constıtuted by these three characterıstic axes. Since the values of coordinates are related to the wavelength we choose, we hope we can classify all the data points located in the defined space into three groups by choosing a sultable wavelength cutoff.

THREE MODELS OF CLASSIFICATION:
It is supposed that all the data points with the same manufacturing procedure will cluster into a sphere around a certain center. We took the average of all the data points with the same manufacturing method as the center of the sphere, shown in Table (3), and found that wavelength

Table 2.1 Statistical farameters for 0.8 um waveleristh cutoff (each farameters sot from the averase of 4 traces)

Table 2.2 Statistical parameters for 0.25 mm waveleristh cutoff (each farameters sot from the averase of 4 traces)

Table 2.3 Statıstical Farameters for 0.08 mm wavelenstin cutoff (each parameters sot from the average of 4 traces)

Table 3 Refererice center paints (Standard deviation, Stewriessy Nurtosis) (each value 15 the averase of the same srouf)
cutoff did affect the position of this center. Thus we examined some models to find the best wavelength cutoff for clearly distinguishing the three conditions. a. Totally Separate Sphere Range Model:

If we choose the distance between the farthest indıvidual point and the corresponding center point as the radius and draw a sphere, we get three spheres with three different centers. The optimal condition for which we can distanguish these three spheres, which stand for three different ways to make journal bearing, is to maxımize the distance between all the centers.

Since we have three centers, the distance between every pair of centers are listed in Table (4), the maxımum radius each sphere may have can be considered as follows. Say we have three spheres with centers at points A, B, C, and the corresponding sides are a, b, c. If there is a smallest side, e.g. c, then both spheres, which have their center at elther tip of side c, may have a maxımum radıus equal to $c / 2$. The maximum radıus of the third sphere is equal to the difference between the smaller side and c/2. This can be easily understood when we look at the triangle constituted of the three centers as shown in Fig. (5).

Following the previous idea, the procedure to do this is to find the three centers under different wavelength cutoffs. Then calculate the maximum radius

Table 4 Instance between srouf centers

each sphere may have, and check the number of data points that fall to fall into the corresponding range. The wavelength cutoff which minımızes this failure is the one selected.
b. Mınımızed Overlappıng Area Model:

This ıdea is somewhat sımılar to the previous one. The main difference is that we choose the longest distance between each data point and its corresponding center as radius of the sphere. We got three spheres from three cases. The wavelength cutoff we need is the one which produces mınimum overlap of the three spheres, as shown in Fig. (6).
c. Separated Subspaces Model:

The third approach is based on the ldea that if we find the three centers first, then the data points of the same group should have a shorter distance from the corresponding group center than those from the other two group centers. This can be expressed geometrically, refer to Fig. (7). Imagıne a triangle with three centers A, B, C as its tips. The three planes which are perpendıcular and bisect the three sides individually will intercept at a line called the centroid line. These three planes divide the space into three subspaces. The data points from the same group should fall into the same subspace. Since the distance between a data polnt and the center point in the same subspace will be the shortest one among

the three possible alternatives. The classıfication criteria is to select the region which mınımizes the dıstance to the corresponding center. The best wavelength cutoff is the one for which the most data fıt the model. Table (5) shows the results based on the totally separated sphere criterıa, while Fig. (6) graphically ıllustrates the mınımızed overlapping area idea. The results in Table (5) suggest that the .25 mm cutoff gives the best classıfıcation because the number of correct classifications $1 s$ greatest. Figure (6) also suggests that the .25 mm cutoff 1 s the best to use, because the overlap area is the smallest. Results with the third model, that using the separated subspaces idea, are given in Tables (6.1-6.3). The distances to all three center polnts for each specimen are given in each row, with the selection based on the shortest distance. The last columns in Tables (6.1-6.3) indıcate a correct or incorrect classıfıcation. Based on these results, agaın the .25 mm cutoff has the greatest discriminating power.

We may conclude that among the three models mentioned above, separated subspaces model is the most sultable one to classıfy these journal surfaces with regard to their manufacturlng method. Also, 0.25 mm wavelength cutoff 1 s proved to have a better power to subdivide surface roughness of journal surfaces.

Table 5 Fesults of afflyins the idea of totally sefarated sfhere rarise

Table 6.1 Results of "Separated Subspaces" with 0.8 mim wavelensth cutoff

Table 6.2 Fiesults of Sefarated Subsfaces" with 0.25 ma waveleristh cutoff

Table 6.3 Fesults of "Sefarated Subspaces" with 0.08 min wavelenstin cistoff

V. THE COMPENSATION OF MEASURED SURFACE PROFILE

If we look at the Fig. (2), we may see that when the stylus moves on the profile, the height we really measured at position X_{1} is Y_{1}^{\prime}, the locus of the stylus center, which is $Y_{i} Y_{i}$ ' distant from the real helght Y_{i}. Because of this inevitable measuring error inherent from the geometry of the stylus, partıcularly the finıte radius r, the profile we measured is only the locus of the stylus center, which is different from the true profile, shown in Fig. (2). It is for this reason that $1 t$ is necessary to compensate for this error so that an actual profile may be drawn.

In general, the best that can be done is to approximately reconstruct the true profile. The following models are those we chose to compensate for some of the error.

As a standard for comparison, the proposed compensation or deconvolution methods are evaluated in terms of their effects on the height sensıtıve parameters glven by Eqs. (5-8) for both mathematically simulated surfaces with known parameters and a measured trıangle shaped calıbration surface.

STRAIGHT LINE PROFIIE MODEL:
Imagine that we have an oblique profile $\overline{P D}$ inclined at angle θ as shown in Fig. (8.a), and consider the tip of the stylus as a ball with radius r. When the stylus measures the oblique line in a darection which is parallel to the datum line, at position X_{i} the contact polnt of stylus and surface is C_{i}, the center of stylus tip is O_{1}. The measured height at position X_{1} is $Y_{1}{ }^{\prime}$,
whercas the true helght of the profile at nosition X_{i} is Y_{1}, as shown in Fig. (8a), so there exists an error $Y_{i} Y_{1}{ }^{\prime}$ between the measured height and the true height. If we know the slope of the oblıque line and the radius of the stylus tip, we can get the actual herght at some position X_{i} by subtracting a distance $Y_{i} Y_{i}$ ' from the measured helght at the same position. The distance

$$
\begin{align*}
Y_{I} Y_{i}^{\prime} & =r(\sec \theta-1) \\
& =r\left(\sqrt{1+\left(d y_{i} / d x_{1}\right)^{2}}-1\right. \tag{10}
\end{align*}
$$

where r is the stylus radius, and θ is the tangential angle at contact point C_{1}. CONVEX AND CONCAVE PROFILE MODELS:

Referring to Fig. (8 b and 8 C), lmagine that we have a convex or concave profile with a stylus running over it. The contact point of the stylus and profile is C_{1}, the center of stylus tip at position X_{i} is $O_{i}, Y_{i}{ }^{\prime}$ is the measured helght and Y_{1} is the true height at the same position X_{1}. If the radius of stylus tip is r, the radius of curvature of the profile at position Y_{i} is R_{i} with center at O_{i} ' and the tangential angle θ at contact point C_{i} are known, we may get the true helght Y_{1} by subtracting the distance $Y_{i} Y_{1}{ }^{\prime}$ from the measured helght Y_{1} ', which in this instance gives

$$
\begin{equation*}
Y_{i} Y_{I}^{\prime}= \pm \sqrt{R_{i}^{2}-D_{i}^{2} \sin ^{2} \theta} \pm D_{i} \cos \theta-r \tag{ll}
\end{equation*}
$$

where the first term is negative and the second positive if the profile is convex and the opposite signs apply for a concave profile, and

Figure 8. Models of profile contacting with stylus.

$$
\begin{equation*}
D_{1}=r+R_{1} . \tag{12}
\end{equation*}
$$

The restriction on this solution is

$$
\begin{equation*}
R_{1}^{2} \geq \frac{D_{1}^{2}}{1+\frac{1}{\left(d y_{i} / d x_{i}\right)^{2}}} \tag{13}
\end{equation*}
$$

The first model, Eq. (10) contains only two variables but the other model, Eq. (11), has more variables that must be determıned, in addıtion to the restriction given by Eq. (13), which can be violated when the angle becomes large or when R becomes smaller than r. Since the first model is simpler to follow and above all, with no limitations on application, we shall continue our discussion on modıfying processes based only on Eq. (10).

When applying the straight line model to the measured profile, we need to know the two varıables first, the radius of the stylus and the slope of the tangential line at the contact point. The former can be measured directly, but the slope can only be estimated from the profile measurements.

To estimate the slope, $d y_{i} / d x_{i}$, two approaches are used. The first, designated Method I, uses a backward difference approximation to the derivative

$$
\begin{equation*}
\frac{d y_{i}}{d x_{1}}=\frac{y_{1}-y_{i-1}}{\Delta x} \tag{14}
\end{equation*}
$$

where the y_{1}^{\prime} 's are the measured profile heights and Δx is the sample interval. Method II amounts to a central difference to estimate the slope, i.e.

$$
\begin{equation*}
\frac{d y_{1}}{d x_{i}}=\frac{y_{i+1}-y_{1-1}}{2 \Delta x} \tag{15}
\end{equation*}
$$

for approximating the slope.
VERIFICATION OF THE PROPOSED METHODS:
To determıne how much improvement is possible using the approaches outlined in the previous section, both mathematical simulation and actual profile measurements were used. Faırly simple analytically descrıbed functions were used for the profile shapes, viz. a sine wave and a triangle wave. For these shapes, the parameters given by Eqs. (5-8) can be calculated analytically and are:

	Sine	Triangle
R_{a}	H / π	$H / 4$
R_{q}	$H \sqrt{2} / 4$	$H \sqrt{3} / 6$
γ_{1}	0	0
γ_{2}	1.5	1.8

Where H is the peak to valley height. Note that all these parameters are independent of the period, meaning they are only height sensitive. Furthermore, since the skewness and kurtosis are normalized by R_{q}, they are dimensionless numbers.

The purpose of the mathematical simulation was to be able to elıminate errors introduced in the profile measurements that can be attributed to the manufacturing of reference standards. The analytıcally defined profile was generated, and the simulation program was designed to provide
the resulting motion of the stylus as it traversed this profile. To do this, suppose that the stylus is now at horizontal position X_{i}, and the profile neighboring to this positıon $1 s$ decomposed into discrete points. Assume the vertıcal position of the stylus center is $Y_{i}{ }^{\prime \prime}$, and calculate all the distances between this assumed center point and all the discrete profile points. These distances are compared with the stylus radius; these distances must be all no less than the stylus radius, with at least one distance equal to the stylus radius. We can find the measured height Y_{1} by iterating the position of the stylus center vertically.

The simulated triangle shaped profile was based on the geometry of a roughness specimen that is used for calibration purposes. This standard is certified to have a roughness $R_{a}=3.124 \pm .10 \mu \mathrm{~m}$. A profile was made on this standard using the setup shown in Fig. (3) using a $\Delta x=.005 \mathrm{~mm}$ and a stylus radius of $12.7 \mu \mathrm{~m}$. Figure (9) shows the analog and digitızed trace of this sample, and this same data was used for subsequent analysis. Using the data in Fig. (9), the period of the triangle wave was found to be $P=93.133 \mu \mathrm{~m}$, and the peak to valley height $\mathrm{H}=12.497 \mu \mathrm{~m}$.

The simulation used the $12.7 \mu \mathrm{~m}$ radius and the aforementioned triangle wave characteristics. With the same stylus radıus, a sine wave with an amplıtude and period the same as the triangle wave was also simulated.

(a)

(b)

Figure 9. (a) The continuous profile on channel 1.
(b) The discrete profile on channel 2, of the test specimen.

Table (7) indicates how the theoretical parameters compare with those based on the measurements before compensation to account for stylus radius. Table (8) shows how the height sensituve characteristics are affected by applying Eq. (10) to the simulated measurement and using Method I, Eq. (14), and Method II, Eq. (15), to estimate the profile slope. The errors that correspond to the results in Table (8) are given in Table (9). Table (10), while similar to Table (8), dıffers from it in that the sıne wave profile is simulated, rather than a triangular profile.

There are obvious differences between those parameters calculated from different geometric profiles. The theoretical parameters, which are calculated based on the ideal triangular profile with the specıfied height and period, are obviously closer to those experimentally measured with stylus. However, there is some difference between the theoretical values and measurements due to the inability to make a perfect standard. The errors in Table (9) indicate that some ımprovement in obtaining the height sensitive parameters can be obtained using the methods based on Eqs. (10), (14) and (15). Specifically, for triangle shaped surfaces, the corrections based on Ef. (10) and Eq. (14) gave the best results, with all errors less than .4\%. While the overall improvement is not great for an idealized surface lıke a triangle, the improvement could be greater for real surfaces that are more random.

Table 7. Farameters of measured triansular wave

Table 8 Comfarison for Simulated Triansle Wave

Tanle 9% Error of Farameters with theoretical set as basis for simulated triansular wave

Table 10 Comparisorifor simulated sime wave.

Work presented in this report was aimed at trying to find out which statıstical parameters estımated from digitized profiles can discrimınate between the surface topography of journal surfaces produced by different manufacturing sequences. Results were also presented on dıfferent ways to compensate for the errors introduced by having a finite stylus radius on surface profile measurements.

The results presented indicate that:

1. One parameter or pair of parameters can not sufficiently discriminate between different surface topography. Instead, using three parameters, $1 . e$. RMS roughness, skewness, kurtosis, may do this applacatıon well.
2. The "Separated Subspaces" in RMS - skewness - kurtosis space $1 s$ a good model to deal with the classification of the journal surfaces and may be applied to other categorization work. With this criterion, the proper wavelength cutoff for classifıcation analysis 150.25 mm cutoff. 3. The proposed ways for compensating for the stylus error may correct the measured profile and make it closer to the actual profile. Using both simulated and measured profiles, it was found that improvements can be made using the proposed method, particularly when backward differences are used to estimate the profile slope. Errors for the height sensitive profile parameters of simulated surfaces were less that . 4\%.

REFERENCES

1. Bellows, Guy, "Surface Integrity of Nontradıtıonal Machınıng Frocesses," Proceedings of the International Conference on Surface Technology, SME, May, 1973.
2. Whitehouse, D.J., "Review of Topography of Machıne Surface," Proceedings of the International Conference on Surface Technology, SME, May, 1973.
3. El-Helleby, S.O.A., and Rowe, G.W., "Influence of Surface Roughness and Residual Stress on Fatigue Life of Ground Steel Components," Metals Tech., 7:221-5, July, 1980.
4. Briggs, G.A.D., and Briscoe, B.J., "Effect of Surface Topography on the Adhesion of Elastic Solids," App. Phys., 10:2453-66, December 21, 1977.
5. Chow, P.L., and Saibel, E.A., "Roughness Effect in Hydrodynamic Lubrıcatıon," Jour. Lubr. Tech., 100:176-9; Discussion 180, Aprıl 1978.
6. Kaneta, M., and Cameron, A., "Effects of Asperities in Elastohydrodynamıc Lubrication." Jour. Lubr. Tech., 102:374-9, July 1980.
7. Purcupile, John C., "The Role of Surface Conditions in Boiling Heat Transfer," Proceedings of the International Conference on Surface Technology, SME, May 1973.
8. Grewal, N.S., and Saxena, S.C., "Effect of Surface Roughness on Heat Transfer from Horizontal Immersed Tubes in a Fluidized Bed," Jour. Heat Transfer, 101:397-403, August 1979.
9. Bannert, K., and Woelk, G.U., "Influence of the Blading Surface Roughness on the Aerodynamic Behavior and Characterıstic Anaxial Compressor," Jour. Eng. Power, l02:283-7, Aprıl 1980.
10. Haemers, G., Importance of the Surface in Wire Making and Wire Qualıty," Wire J., 11:134-40, September 1978.
11. Agarwal, R.A., Patki, G.S., and Basu, S.K., "Influence Of Surface Topography on Contact Behaviour of Surfaces," Jour. Inst. Eng. (India) Mech. Eng. Div., V. 59, pt. ME 3, pp. 139-142, November $197 \overline{8}$.
12. Osanna, P. Herbert, "Surface Roughness and Sıze Tolerance," Wear, V. 57, n. 2, December 1979.
13. Shaw, M.C., "The Importance of Solid Surfaces in Science and Enganeering," Proceedings of the International Conference on Surface Technology, SME, May 1973.
14. Thomas, T. R., "Surface Roughness Measurement: Alternatives to the Stylus," Int. Metro Conf.: NELEX '78, East Kilbride, Glastow, Scotland, November 28-30, 1978, Issued by Natl. Eng. Lab., East Kılbrıde, Glasgow, Scotland, 1978, Pap. 4.2, p. 23 .
15. Amerıcan Natıonal Standards Institute, B 46.
16. Thomas, T. R., "Characterization of Surface Roughness," Precision Eng., 1981, pp. 97-104.
17. Reason, R. E., "The Bearing Parameters of Surface Topography," Proc. 5th MTDR Conf., Pergamon Press, 1964.
18. Pesante, M., "Determınation of Surface Roughness Typology by Means of Amplıtude Densıty Curves," CIRP Ann., 12, 61, 1963.
19. Ehrenreich, M., "The Slope of the Bearing Area as a Measure of Surface Texture," Microtecnic, 1959.
20. Teague, Clayton E., "Uncertainties in Calibrating a Stylus Type Surface Texture Measuring Instrument with an Interferometrically Measured Step," Metrologia, V. 14, N. l, 1978, pp. 39-44.
21. Whitehouse, D. J., and Vanherk, P., "Survey of Reference Line Used in the Assessment of Surface Texture," CIRP, 21/2, 1972.
22. Shunmugam, M. S., and Radhakrishnan, V., "Selection and Fitting of Reference Line for Surface Profiles, Inst. Mech. Eng. Proc., 190, no. 7:193-201, 1976.
23. Al-Salihi, T., Ph.D. Thesis, Unıversity of Bırmingham.
24. Wormersley, J. R., and Hopkins, M. R. J., Etats Surface, 135 (1945).
25. Peklenık, J., "Investıgation of the Surface Typology," CIRP Ann., 15 381, 1967.
26. DeVries, W. R., "The Surface Topography of Journals," CIRP Annals, Vol. 31/l, 1982.
27. DeVries, W.R., "Documentation for Digital Surface Profile Analysis, the AACIS Program Package," Internal R.P.I. Report, October, 1982.

End of Document

[^0]: Table 1. Grous the samples accordins to their marnufacturins frocedures

