

Dufour, S., Dohoo, I. R., Barkema, H. W., Descôteaux, L., Devries, T. J., Reyher, K. K., ... Scholl, D. T. (2012). Epidemiology of coagulase-negative staphylococci intramammary infection in dairy cattle and the effect of bacteriological culture misclassification. Journal of dairy science, 95(6), 3110-24. 10.3168/jds.2011-5164

Link to published version (if available): 10.3168/jds.2011-5164

Link to publication record in Explore Bristol Research PDF-document

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be removed. However, if you believe that this version of the work breaches copyright law please contact open-access@bristol.ac.uk and include the following information in your message:

- Your contact details
- Bibliographic details for the item, including a URL
- An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an initial judgement of the validity of the claim and, where appropriate, withdraw the item in question from public view.

Coagulase-negative staphylococci intramammary infection epidemiology in dairy cattle and impact of bacteriological culture misclassification

Journal:	Journal of Dairy Science
Manuscript ID:	JDS-11-5164.R2
Article Type:	Research
Date Submitted by the Author:	n/a
Complete List of Authors:	Dufour, Simon; University of Montreal, Pathology and Microbiology Dohoo, Ian; University of P.E.I., Health Management Barkema, Herman; University of Calgary, Faculty of Veterinary Medicine DesCôteaux, Luc; University of Montreal, Faculty of Veterinary Medicine, Clinical Sciences DeVries, Trevor; University of Guelph, Kemptville Campus, Animal & Poultry Science Reyher, Kristen; Atlantic Veterinary College, Health Management; Roy, Jean-Philippe; Université de Montréal, Sciences cliniques Scholl, Daniel; South Dakota State University, SD Agricultural Experiment Station
Key Words:	dairy cow, mastitis, CNS, Misclassification
	2

1	INTERPRETIVE SUMMARY
2	Coagulase-negative staphylococci intramammary infections epidemiology. Dufour.
3	A longitudinal cohort study was carried out to identify management practices that can be
4	used on dairy farms to prevent acquisition or increase elimination of intramammary
5	infections caused by coagulase-negative staphylococci. The results indicate that the
6	infection acquisition rate is lower in herds using sand or wood product based bedding
7	compared to straw bedding. Quarters of cows with access to pasture also showed lower
8	odds of becoming infected. Ignoring the limitations of bacteriological culture for
9	identification of these IMI resulted in a considerable bias in measures of disease
10	frequency and of association with exposures.
11	

12	COAGULASE-NEGATIVE STAPHYLOCOCCI IMI EPIDEMIOLOGY
13	
14	Coagulase-negative staphylococci intramammary infection epidemiology in dairy
15	cattle and impact of bacteriological culture misclassification
16	
17	S. Dufour ^{*, †} , I.R. Dohoo ^{*, ‡} , H.W. Barkema ^{*, §} , L. DesCôteaux ^{*, #} , T. J. DeVries ^{*, ∥} ,
18	K.K. Reyher ^{*,‡} , JP. Roy ^{*, #} , and D. T. Scholl ^{*,¶}
19	
20	*Canadian Bovine Mastitis Research Network, C.P. 5000, St-Hyacinthe, Quebec, J2S
21	7C6, Canada
22	[†] Dept. of Pathology and Microbiology, Faculty of Veterinary Medicine, University of
23	Montreal, C.P. 5000, St-Hyacinthe, Quebec, J2S 7C6, Canada
24	[‡] Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave,
25	Charlottetown, PEI, C1A 4P3, Canada
26	[§] Dept. of Production Animal Health, Faculty of Veterinary Medicine, University of
27	Calgary, 3300 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
28	[#] Dept. of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, C.P
29	5000, St-Hyacinthe, Quebec, J2S 7C6, Canada
30	$\ $ Dept. of Animal and Poultry Science, University of Guelph, Kemptville Campus, 830
31	Prescott St., Kemptville, Ontario, K0G 1J0, Canada
32	[®] College of Agriculture and Biological Sciences, South Dakota State University,
33	Brookings, SD 57007, USA
34	Corresponding author: Simon Dufour

- 35 Faculty of Veterinary Medicine, University of Montreal
- 36 C.P. 5000
- 37 St-Hyacinthe, Quebec, Canada, J2S 7C6
- 38 Tel: +1 (450) 773-8521 ext: 0195
- 39 Fax: +1 (450) 778-8179
- 40 E-mail: simon.dufour@umontreal.ca
- 41

 Jumontreal.

42 ABSTRACT

43 Objectives of this study were to identify the manageable risk factors associated with the 44 lactational incidence, elimination, and prevalence of coagulase-negative staphylococci 45 (CNS) intramammary infections (IMI) while taking into account the difficulties inherent 46 to their diagnosis. A second objective was to evaluate the impact of CNS IMI 47 misclassification in mastitis research. A cohort of 90 Canadian dairy herds was followed 48 throughout 2007-2008. In each herd, series of quarter milk samples were collected from a 49 sub-sample of cows and bacteriological culture was performed to identify prevalent, 50 incident and eliminated CNS IMI. Practices used on farms were captured using direct 51 observations and a validated questionnaire. The relationships between herd CNS IMI 52 prevalence and herd incidence and elimination rates were explored using linear 53 regression. Manageable risk factors associated with the prevalence, incidence, or 54 elimination of CNS IMI were identified via semi-Bayesian analyses using a latent class 55 model approach allowing adjustment of the estimates for the imperfect sensitivity and 56 specificity of bacteriological culture. After adjustment for the diagnostic test limitations, 57 a mean CNS IMI quarter prevalence of 42.7 % (95% CI: 34.7, 50.1) and incidence and 58 elimination rates of 0.29 new IMI/quarter-month (95% CI: 0.21, 0.37) and 0.79 59 eliminated IMI/quarter-month (95% CI: 0.66, 0.91), respectively, were observed. 60 Considerable biases of the estimates were observed when CNS IMI misclassification was ignored. These biases were important for measures of association with risk factors, were 61 62 nearly always toward the null value, and led to both Type I and Type II errors. 63 Coagulase-negative staphylococci IMI incidence appeared to be a stronger determinant of 64 herd IMI prevalence than IMI elimination rate. The majority of herds followed were

65	already using blanket dry cow treatment and post-milking teat disinfection. A holistic
66	approach considering associations with all 3 outcomes was employed to interpret
67	associations between manageable risk factors and CNS IMI. Sand and wood-based
68	product bedding showed desirable associations with CNS IMI compared to straw
69	bedding. Quarters of cows that had access to pasture during the sampling period had
70	lower odds of acquiring a new CNS IMI and of having a prevalent CNS IMI. Many
71	practices showed an association with only one of the CNS outcomes and should,
72	therefore, be considered with caution.
73	

- 74 *Key words:* dairy cow, mastitis, CNS, misclassification
- 75

7	6
	υ.

INTRODUCTION

77

78 Historically, CNS IMI have received less attention compared to IMI caused by 79 major pathogens such as *Staphylococcus aureus*, streptococci, and coliforms. One reason 80 for this is that CNS IMI most often remain subclinical and generally lead to only mild to 81 moderate SCC elevations compared to IMI caused by major mastitis pathogens (Djabri et 82 al., 2002; Sampimon et al., 2010; Supré et al., 2011). With the gradually increasing 83 control of IMI caused by major mastitis pathogens, however, recognition of the 84 importance of CNS IMI and of their potential impact on udder health is rising. In recent 85 studies conducted in different countries, CNS were the most common cause of IMI and 86 were described as emerging mastitis pathogens (Pyörälä and Taponen, 2009; Sampimon 87 et al., 2009a; Tenhagen et al., 2006). In a Dutch study, 10% of the quarters from low 88 SCC cows and 15% of the quarters from high SCC cows had CNS cultured from their 89 milk (Sampimon et al., 2009a). Similarly, in Germany, CNS was cultured from 8 to 11%, 90 depending on parity and stage of lactation, of apparently healthy quarters (Tenhagen et 91 al., 2006). Results from different studies are difficult to compare, though, since different 92 definitions of what constitute a CNS IMI are often used. In addition, regardless of the 93 CNS IMI definition used, the use of bacteriological culture to diagnose CNS IMI always 94 produces a substantial level of IMI misclassification (Dohoo et al., 2011). In much 95 research, misclassification bias is ignored or discussed strictly qualitatively. Nonetheless, 96 relatively mild non-differential misclassification can yield, in some situations, a sizeable 97 bias of the estimates of disease frequency and of association with exposures (Höfler, 98 2005).

Page 7 of 48

Journal of Dairy Science

99	Even though each CNS-infected quarter may only show a moderate increase in
100	SCC, the often large proportion of infected quarters in a herd can still have an important
101	impact on the bulk milk SCC (BMSCC). In a large field study in the USA, it was
102	estimated that CNS IMI were responsible for 18% of the BMSCC in low BMSCC herds
103	(<200,000 cells/ml), a BMSCC contribution substantially larger than those of any of the
104	so-called major mastitis pathogens (Schukken et al., 2009). These results suggest that, in
105	herds where major mastitis pathogens have been controlled, CNS IMI are an important
106	obstacle impeding further udder health improvement.
107	Although CNS IMI have been shown to have an impact on individual cow SCC
108	and BMSCC, there is still much debate, however, on the harmful effect of acquiring a
109	CNS IMI. In some studies cows or heifers with CNS IMI were shown to have a slightly
110	higher daily milk production when compared to uninfected individuals (Compton et al.,
111	2007; Piepers et al., 2010; Schukken et al., 2009). Milk production losses can be
112	underestimated, however, when infected individuals are compared to healthy herd mates
113	rather than to their own pre-infection milk production (Pyörälä and Taponen, 2009). It is
114	plausible that higher producing cows or heifers would be more at risk of acquiring a CNS
115	IMI than the other way around. In a study conducted by Matthews et al. (1990) CNS-
116	infected quarters had lower odds of acquiring a S. aureus IMI than CNS-free quarters. In
117	another study, however, an increase risk of S. aureus IMI acquisition was observed in
118	CNS-infected quarters (Dufour et al., In press). It is still unclear whether or not there is a
119	real protective effect of CNS IMI against S. aureus IMI. It is also unclear whether a
120	hypothetical beneficial effect resulting from a few potentially averted S.aureus IMI

121	would compensate for a higher CNS prevalence. With the available knowledge on CNS
122	IMI, preventing these IMI seems to remain an appropriate recommendation.
123	Preventing new CNS IMI is the key determinant for long-term reduction and
124	control of these IMI. Little is known, however, about effective strategies for CNS IMI
125	prevention. A recent study has investigated risk factors associated with CNS IMI
126	prevalence in early lactation of dairy heifers (Piepers et al., 2011), while another
127	examined the risk factors associated with CNS IMI herd prevalence (Sampimon et al.,
128	2009b). No studies could be found in the literature to have been conducted on risk
129	factors associated with the acquisition or the elimination of CNS IMI during the lactation.
130	The study presented is a longitudinal cohort study on acquisition and elimination
131	of CNS IMI during lactation on 90 Canadian dairy herds. The main objective was to
132	identify manageable risk factors associated with the incidence, elimination, and
133	prevalence of these IMI while taking into consideration the difficulties inherent to the
134	diagnosis of CNS IMI. A secondary objective was to evaluate the impact of CNS IMI
135	misclassification on estimates of disease frequency and on estimates of association with
136	risk factors.
137	
138	MATERIALS AND METHODS
139	
140	The herds selected were members of the National Cohort of Dairy Farms (NCDF)
141	of the Canadian Bovine Mastitis Research Network (CBMRN). A complete description
142	of the herd selection process as well as of the characteristics of these herds has been
143	published previously (Reyher et al., 2011). Briefly, 91 herds were recruited in 4 regions

144	of Canada to participate in a 2 yr (2007 and 2008) cohort study. Early in 2007, one herd
145	refused to pursue participation because of the extent of work involved. The study
146	presented in this manuscript was carried out with data from the 90 herds that participated
147	to the NCDF for at least one yr.
148	During the 2 yr course of the study, management practices in place and other
149	important farm conditions were measured on multiple occasions using direct observations
150	and a validated questionnaire (Dufour et al., 2010). These repeated observations were
151	designed to allow the use, in subsequent analyses, of the practices and conditions in place
152	at the beginning of each of 4 different sampling periods rather than merely those
153	employed at the beginning of the cohort study. Management practices under
154	investigation have been described thoroughly elsewhere (Dufour et al., 2010; Dufour et
155	al., 2011a) and could be summarized in 8 categories: 1) milking procedures; 2) milking
156	equipment; 3) stalls and housing; 4) maternity pens; 5) general management and
157	biosecurity; 6) nutrition; 7) clinical mastitis; and 8) demographic and IMI prevalence.
158	Attitudes, motivations, knowledge, and beliefs of dairy producers were also investigated
159	as on-farm conditions that could potentially modify the effect of the practices under
160	investigation. Individual and herd level milk production and SCS data, as well as herd
161	demographic data were obtained from Dairy herd improvement records from 2005 to
162	2009. A complete description of the data collection process as well as the prevalence of
163	use of the selected management practices on the NCDF herds can be found in Dufour et
164	al. (2010).
165	Milk Sampling

165 Milk Sampling

166	At the beginning of each of 4 different sampling periods (March-May 2007, June-
167	August 2007, January-March 2008, and June-August 2008), a sample of 15 apparently
168	healthy lactating cows from each NCDF herd was selected. During each sampling
169	period, series of 3 milk samples were collected from each quarter of the selected cows at
170	intervals of 3 wks by a team of trained technicians using a standardized protocol (Reyher
171	et al., 2011). Signs of inflammation of the quarter and teat end condition scores
172	(Neijenhuis et al., 2000) were recorded. Quarters showing signs of clinical mastitis were
173	excluded. Cows that were treated for conditions other than mastitis were not excluded.
174	Bacteriological culture of the milk samples was carried out using a protocol based on
175	NMC guidelines (Hogan et al., 1999). Ten μ l of milk was streaked on a Columbia agar
176	+5% sheep blood plate and incubated aerobically at 35°C for 24h. The different types of
177	colonies were enumerated (up to 10 colonies) and speciated after 24h using
178	recommended bacteriologic procedures, then re-incubated for another 24h. SCC
179	measurements were obtained for each quarter milk sample using the Fossomatic milk cell
180	counter (Fossomatic 4000 series, Foss Electric, Hillerød, Denmark).
181	Quarter milk samples for which 3 or more pathogen species were cultured were
182	considered contaminated and were excluded. A quarter was considered infected with
183	CNS whenever bacteriological culture yielded \geq 100 phenotypically identical CNS cfu/ml
184	of milk. This threshold was chosen based on the results from Dohoo et al. (2011). The
185	same threshold was chosen to define IMI due to S. aureus, Corynebacterium spp,
186	Streptococcus uberis, Streptococcus agalactiae, Streptococcus dysgalactiae, and other
187	streptococci species (presumably, primarily enterococci). Pathogen-specific quarter,
188	cow, and herd prevalence of IMI at the first sampling of each sampling period were

189 computed for the previously mentioned pathogens and investigated as explanatory190 variables.

191 For each outcome (incidence, elimination, and prevalence of CNS IMI) a different 192 dataset was constituted. To investigate CNS IMI incidence and elimination, samples from each series were organized in 2 pairs (1st and 2nd samples, 2nd and 3rd samples) and 193 194 pairs with incomplete results were discarded (i.e. pairs with a contaminated sample). Only pairs negative for CNS on the 1st sample of the pair were considered at risk of 195 196 becoming infected and an incident IMI was deemed to have occurred if CNS was 197 cultured from the following sample. Conversely, only pairs where CNS was cultured from the 1st sample of the pair were considered at risk of eliminating an existing CNS IMI 198 199 which was deemed to have occurred if the following sample was negative. Based on 200 these definitions, outcomes for the incidence and elimination datasets were, respectively, 201 acquisition and elimination of a CNS IMI over a 3-week period (i.e. between milk 202 samples of a pair). 203 For CNS IMI prevalence, the series of quarter milk samples collected during a 204 specific sampling period were considered as one single observation. A prevalent CNS 205 IMI was deemed to be present if 1 or more of the 3 samples collected was found to be 206 positive for CNS. Series where CNS was never cultured were defined as free of CNS 207 IMI. The outcome for the prevalence data set was, therefore, the presence of a CNS IMI 208 in any of the milk samples of a series. Based on these definitions, 3 separate datasets 209 specific to each of the 3 outcomes of interest (CNS IMI incidence, elimination, and 210 prevalence) were generated.

211 Analyses

First, the 2 yr CNS IMI incidence rate, elimination rate, and prevalence were computed for each NCDF herd. Next, the relative impact of incidence and elimination rates on the prevalence of CNS IMI was investigated using a linear regression model with dependent variable (the computed 2 yrs CNS IMI herd prevalence) and explanatory variables (the herd incidence and elimination rates).

217 Screening of Explanatory Variables. Descriptive analyses were conducted for 218 each variable in each of the 3 datasets to identify distributions and unlikely values. In 219 one herd, pre-milking teat disinfection and wearing gloves during milking were only used 220 by half of the milkers; observations from this herd for these specific variables were, 221 therefore, excluded from subsequent analyses. Only one of the participating herds had 222 not implemented post-milking teat disinfection (PMTD). This practice was, therefore, 223 not retained as an explanatory variable since its measure of association would be 224 perfectly confounded by other characteristics specific to this herd. Back-flush of the 225 milking units between groups of cows was also used in one herd only and was not 226 retained as explanatory variable for the same reason. Finally, maternity pen variables 227 were not considered in the incidence analyses since cows were not exposed to these 228 variables anymore when CNS IMI acquisition was measured during the lactation. 229 Next, for each outcome (acquisition of a CNS IMI over a 3-week period, 230 elimination of an existing CNS IMI over a 3-week period, and presence of a CNS IMI in 231 a series of milk samples), unconditional associations between explanatory variables and 232 occurrence of the outcome were estimated. Explanatory variables at the herd, cow, 233 quarter, and pair (of samples) level were considered. The correlation structure of the data 234 was a hierarchical cross-classified structure. Briefly, although 2 pairs of observations

235 were available per guarter during a sampling period, the definitions used for incident and 236 eliminated IMI precluded correlation of observations per quarter per sampling period. 237 For instance, a quarter acquiring an IMI on the first pair (first sample of the pair negative, 238 second sample positive) would not be considered at risk of acquiring a new IMI for the 239 second pair (first sample of the pair is positive), thus pairs of samples collected on a 240 quarter during a sampling period could be considered independent observations. In the 241 prevalence dataset, only one observation was considered per quarter during a sampling 242 period, therefore precluding any quarter correlation within a sampling period. For the 3 243 outcomes, however, observations were clustered within cow, and, since cows could be 244 randomly selected in multiple sampling periods, observations from some cows could be 245 cross-classified by herd and by sampling period. In all 3 datasets, however, most of the 246 cows were randomly selected for only one sampling period, and only 18%, 2%, and < 1%247 of cows were selected for respectively 2, 3, and all 4 sampling periods. To facilitate the 248 first stages of the analyses, unconditional analyses were carried out using a hierarchical 249 logistic regression model which accounted only for cow and herd clustering of 250 observations. These analyses were performed with the GLIMMIX procedure of SAS 9.2 251 (SAS Institute Inc., Cary, NC) using Laplace approximation. For continuous variables, 252 linearity was evaluated by visual inspection of the lowess smoothed curve of the 253 relationship between the continuous variable and the log odds of the outcome (Dohoo et 254 al., 2009); variables were categorized whenever the linearity assumption could not be 255 met. Variables with $P \le 0.20$ (Wald test) were retained as potentially important 256 explanatory variables. Pearson and Spearman correlation coefficients were computed 257 among the retained variables to identify co-linearity issues ($\rho < -0.6$ or $\rho > 0.6$).

258 **Rough Models Construction.** For each outcome, a putative causal diagram based 259 on theoretical background was developed with the retained variables to identify 260 potentially important confounders and effect modifiers. A stepwise backward selection 261 strategy was then used to construct a rough model for each of the 3 outcomes using the 262 previously described simplified logistic hierarchical model. In these models, only the 263 retained variables that could theoretically be modified relatively easily (referred to as 264 "manageable risk factors" in the remainder of the manuscript) were tested for inclusion. 265 Initial quarter, cow, or herd prevalence of IMI by pathogens other than CNS were strictly 266 considered in these models as potential confounders or effect modifiers. Initial quarter 267 SCC measurements were treated likewise. A relatively liberal P value of 0.10 was 268 chosen as the inclusion criterion so variables that might have been significantly 269 associated with the true outcome (the true unmeasured CNS IMI status) would not be 270 excluded because of the inability to correctly and precisely measure this outcome using 271 routine bacteriological culture. During the selection process, variables identified as 272 potential confounders in the putative causal diagram were included in the model 273 whenever one of the confounded variables was present. For each management practices 274 included in the model, a maximum of three logically-plausible effect modifiers were then 275 tested. These effect modifiers were included in the model if a Wald test conducted on the 276 cross-product terms yielded a P value lower than 0.05/n, where n was the total number of 277 effect modifiers tested in the model (Bonferroni adjustment for multiple comparisons). 278 *Misclassification Adjustment of the Models.* Estimates from these 3 rough

278 *Misclassification Adjustment of the Models*. Estimates from these 3 rough 279 models were then revised to take into account the cross-classified part of the structure and 280 to correct for the likely CNS IMI status misclassification due to the imperfect sensitivity

281	(Se) and specificity (Sp) of bacteriological culture. For this last step, a semi-Bayesian
282	approach using a latent class model similar to the one described by McInturff et al.
283	(2004) was used. A latent class model relates an observed variable to a latent
284	unmeasured variable; in this study the IMI status measured using milk bacteriological
285	culture needed to be related to the true but unmeasured quarter IMI status. With the
286	proposed approach, prior distributions for the Se and Sp of the test used to measure the
287	outcome can be used to relate the latent and observed variables. In this study, estimates
288	of Se and Sp of bacteriological culture for an IMI definition based on isolation of ≥ 100
289	CNS cfu/ml, and obtained using NCDF bacteriological isolates (Dohoo et al., 2011) were
290	used to generate prior distributions for CNS IMI misclassification parameters. In this
291	latent class model, misclassification of IMI status was deemed to be independent of the
292	others variables in the model (non-differential misclassification). For instance,
293	misclassification of the CNS IMI status of a quarter milk sample was deemed to be
294	independent of the management practices used on the farms.
295	The impact of misclassification of exposures has been well described by
296	Gustafson (2004) and, in some situations, will also lead to an important and sometimes
297	unpredictable bias of the estimate of association and of its standard error. A validation
298	study was, therefore, conducted with the NCDF participants to obtain Se and Sp estimates
299	of the exposure measurements obtained using a questionnaire compared to direct
300	observations (Dufour et al., 2010). For some exposures that could not directly be
301	observed, estimates of repeatability rather than Se and Sp were available; in this situation
302	the method proposed by Lash et al. (2007) was used to generate Se and Sp estimates.
303	Sensitivity and Sp estimates of the explanatory variables were inspected, and these

Page 16 of 48

304	variables were further categorized when needed in order to restrict the magnitude of the
305	potential misclassification bias. This bias was minimized by ensuring that moderately
306	observed exposures (30-70%) used in the analyses had both Se and Sp estimates ≥ 0.90 ,
307	that uncommonly observed exposures (\leq 30%) had Sp estimate \geq 0.95, and, finally, that
308	commonly observed exposures (\geq 70%) had Se estimates \geq 0.95. These values were
309	chosen based on results from Höfler (2005) to restrict the analyses to situations where the
310	magnitude of exposure misclassification bias was likely to be small.
311	During this last phase of analyses, the complete cross-classified hierarchical
312	structure of the data was taken into account. The informative prior distributions specified
313	for the misclassification parameters (Se and Sp) are described in Table 1. Briefly, uni-
314	modal beta distributions centered on the Se and Sp estimates obtained using NCDF
315	isolates and reported in Dohoo et al. (2011) were chosen for Se and Sp. Furthermore,
316	these distributions were truncated at values of more and less than 5 percentage-points
317	around the reported estimate. This latter restriction was implemented to avoid less
318	probable and sometimes inappropriate Se and Sp combinations and, therefore, improve
319	convergence of the Markov chain Monte Carlo (MCMC) chains. In addition, for the IMI
320	prevalence analysis, different Se and Sp prior distributions were used for series where
321	one (n=1,439), 2 (n=4,852), or 3 (n=13,551) culture results were available to account for
322	the increasing Se and decreasing Sp resulting from the parallel interpretation of multiple
323	diagnostic tests (Dohoo et al., 2009). Non-informative prior distributions were used for
324	the risk factors and random effects parameters. To evaluate the impact of using
325	traditional analyses where IMI misclassification is usually ignored, the 3 models were
326	also run with Se and Sp of exactly 100%.

327	Finally, traditional and misclassification-adjusted estimates of the mean CNS IMI
328	prevalence and incidence and elimination rates were obtained using the same approach.
329	To achieve this, a model with only an intercept (β_0) and random effects was used for each
330	outcome using first Se and Sp estimates of exactly 100% and then the Se and Sp
331	estimates presented in Table 1. Mean estimates of prevalence, incidence rate, and
332	elimination rate were then obtained by transformation of their respective intercepts using
333	the following formula (Dohoo et al., 2009):

 $P = \frac{1}{1 + e^{-(\beta 0)}}$ [1]

335 Incidence and elimination rates were then converted to number of events per quarter-336 month.

337 Inferences presented were obtained using WinBUGS 1.4.3 (MRC Biostatistics 338 Unit, Cambridge, UK). These were based on MCMC samples of size 75,000 composed 339 of 3 different chains with different starting values. Visual inspection of the trajectories 340 and of the evolution of the Gelman-Rubin statistic were used to monitor the convergence 341 of the chains (Ntzoufras, 2009). Plots of the chains autocorrelation were inspected and 342 thinning of the chains was used when appropriate. The WinBUGS code is available from 343 the main author upon request. There were no further attempts to prune off the models 344 from the variables that were not statistically significant after the misclassification 345 adjustment was conducted. In the revised models, explanatory variables with 95% 346 credibility interval not containing the null value (1.0) were considered statistically 347 significant. 348

- 349

RESULTS

350

351	Herds selected in this study milked on average 85 cows (range 32 to 326) and had
352	a mean 305-d milk production of 9,781 kg of milk (range 7,734 to 12,377). A complete
353	description of the NCDF herds can be found in Reyher et al. (2011). Over the 2 yr course
354	of the study, 59,167 quarter milk samples were collected; 67 samples were lost or
355	damaged before bacteriological culture could be realized, 159 samples were excluded
356	because signs of clinical mastitis (mastitis score > 0) were observed, and 7,145 samples
357	were excluded because 3 or more pathogen species were cultured.
358	The non-adjusted herd CNS IMI quarter prevalence and incidence and elimination
359	rates were all normally distributed with respective medians (25 th and 75 th percentiles) of
360	58.8% (47.2, 67.3), 0.36 new CNS IMI/quarter-month (0.28, 0.49), and 0.76 eliminated
361	CNS IMI/quarter-month (0.67, 0.86). Both herd CNS IMI incidence and elimination
362	rates were significant ($P \le 0.05$) predictors of the herd prevalence. Scatter plots of the
363	relationships between herd prevalence and incidence and elimination rates are displayed
364	in Figure 1. The herd incidence rate had a greater impact on the herd prevalence than the
365	elimination rate. An increase of the herd incidence rate by its inter-quartile range (0.21
366	new IMI/quarter-month) was associated with an increase of the herd prevalence of 16.5
367	percentage-points. An equivalent decrease of the herd elimination rate by its inter-
368	quartile range (0.19 eliminated IMI/infected quarter-month) was associated with an
369	increase in the herd prevalence of only 2.3 percentage-points.
370	Risk Factors
371	CNS IMI Incidence. The incidence data set was composed of 20,354 pairs of

372 milk samples at risk of becoming infected. These pairs were obtained from 11,221

373	quarters belonging to 3,707 cows. A new CNS IMI was identified in 5,009 of these pairs.
374	When correcting for misclassification due to imperfect Se and Sp of bacteriological
375	culture, a CNS IMI incidence of 0.29 new IMI/quarter-month (95% CI: 0.21, 0.37) was
376	observed. In comparison, an incidence rate of 0.36 new IMI/quarter-month (95% CI:
377	0.32, 0.40) was estimated when misclassification was ignored. The direct consequences
378	from the imperfect Se and Sp of bacteriological culture coupled with the observed
379	prevalence of CNS IMI were, therefore, a substantial overestimation of the true CNS IMI
380	incidence rate and an overly narrow confidence interval.
381	Conditional estimates of associations between manageable risk factors and odds
382	of CNS IMI acquisition are presented in Table 2. Quarters of cows that had access to
383	pasture during the sampling period had lower odds of acquiring a new CNS IMI
384	compared to quarters of cows that were confined inside. The type of bedding used in
385	lactating cows' stalls or pens was significantly associated with CNS IMI acquisition; use
386	of sand or wood-based product bedding was associated with lower odds of acquiring a
387	CNS IMI compared to straw bedding. Lower odds of CNS acquisition were observed in
388	herds where milkers received a bonus for milk quality.
389	For the incidence risk factors analysis, ignoring CNS IMI misclassification
390	resulted in a bias toward the null value for all of the computed measures of association.
391	In addition, IMI misclassification lead to narrower interval estimates for these measures.
392	For this analysis, however, ignoring IMI misclassification did not result in any Type I
393	(association wrongfully identified as statistically significant) or Type II (association
394	wrongfully identified as insignificant) errors.

395	CNS IMI Elimination. The elimination dataset comprised 10,054 pairs of milk
396	samples at risk of eliminating a CNS IMI. These pairs of samples were obtained from
397	7,132 different quarters from 3,304 cows. An elimination of the existing CNS IMI was
398	observed in 5,121 of these pairs. When correcting for imperfect Se and Sp of the
399	bacteriological culture, an estimate of 0.79 eliminated IMI/infected quarter-month (95%
400	CI: 0.66, 0.91) was observed. When misclassification was ignored, an estimate of 0.80
401	eliminated IMI/infected quarter-month (95% CI: 0.75, 0.86) was obtained. Coagulase-
402	negative staphylococci IMI elimination rate was therefore only slightly overestimated
403	when IMI misclassification was present. The width of the associated 95% confidence
404	interval was, however, grossly underestimated.
405	Results from the final model on risk factors associated with CNS IMI elimination
406	are reported in Table 3. Briefly, the use of sand bedding was associated with higher odds
407	of IMI elimination. Higher odds of IMI elimination was also seen for quarters of cows
408	with very dirty lower leg. Lower odds of CNS IMI elimination were seen when straw
409	was used as bedding in maternity pens and when new bedding was added fewer than one
410	time per day in these pens. Lower odds of IMI elimination was also seen in herds where
411	milk conductivity was measured during milking. Finally, higher odds of CNS IMI
412	elimination was seen in herds where cows have been purchased in the preceding 6 mo.
413	Like the incidence analysis, ignoring misclassification lead to bias of the odds
414	ratio toward the null value and to narrower confidence intervals. In addition, a Type II
415	error was made (lower leg cleanliness score) when CNS IMI misclassification was
416	ignored.

417	CNS IMI Prevalence. The prevalence dataset contained 19,842 series of quarter
418	milk samples. These series of samples were obtained from 15,771 different quarters from
419	3,998 cows. A total of 11,603 CNS-positive series were observed. Of these, 7,054 series
420	(60.8%) had one CNS-positive sample, 3,183 (27.4%) had 2 positive samples, and for
421	1,366 series (11.8%), all 3 samples were positive for CNS. After adjusting for IMI
422	misclassification, the true CNS IMI prevalence was estimated to be 42.7% (95% CI: 34.7,
423	50.1%). When IMI misclassification was ignored, a prevalence of 60.8% (95% CI: 57.1,
424	64.1%) was estimated. Ignoring IMI misclassification, therefore, resulted in a gross
425	overestimation of the true CNS IMI prevalence and, again, in a too narrow 95%
426	confidence interval.
427	Results from the model on the manageable risk factors for CNS IMI prevalence
428	are reported in Table 4. Similar to the incidence model, quarters of cows that had access
429	to pasture during the sampling period had lower odds of having a prevalent IMI. In herds
430	using sand or wood-based product bedding, a lower CNS IMI prevalence was observed.
431	Odds of having a CNS IMI generally increased, although non-significantly, with the
432	initial average herd SCS. This increase was constant across bedding type with the
433	exception of hay bedding, for which a significant and steep decrease of the odds of a CNS
434	IMI was seen with increasing average herd SCS. Lower odds of a prevalent IMI were
435	seen in herds where cows were left in a maternity pen for more than a week following
436	calving. Finally, providing a bonus to milkers for milk quality and drying teats with
437	paper or cloth towels as part of the milking procedures were associated with lower CNS
438	IMI prevalence.

439 For the prevalence analysis, ignoring misclassification resulted, for nearly all 440 measures of association, in a bias toward the null value. For one estimate (sand bedding 441 and herd SCS interaction term; a continuous variable), however, a bias away from the 442 null value was observed. All confidence intervals were narrower when misclassification 443 was ignored and one Type I (feed total mixed ration) and one Type II (milkers receive 444 bonus for milk quality) errors were made. 445 446 **DISCUSSION** 447 448 This is the first longitudinal study reporting lactational incidence and elimination 449 rates of CNS IMI and the manageable risk factors associated with acquisition and 450 elimination of these in a large sample of herds over an extended period of time. An 451 important strength of this study was the attempt to account for the imperfect Se and Sp of 452 bacteriological culture for identifying CNS IMI. There is still a lack of agreement in the 453 scientific community on what constitutes a CNS IMI, and efforts should therefore be 454 made to link the milk bacteriological culture results interpreted within a given IMI 455 definition to the proper quarter IMI status. Using the method proposed by McInturff et 456 al. (2004) or simpler methods developed for 2x2 tables (Lash et al., 2009) would certainly 457 improve the comparability across studies. In this study, for instance, CNS IMI was

458 identified in 42.7% of apparently healthy mammary quarters. In comparison, a quarter

459 prevalence of 42% was observed in early lactating heifers in Belgium (Piepers et al.,

460 2011) but using a CNS IMI definition requiring \geq 200 CNS cfu/ml of milk. In Germany

461 (Tenhagen et al., 2006) and in the Netherlands (Sampimon et al., 2009a), using IMI

462	definitions of \geq 1,000 and \geq 500 CNS cfu/ml of milk respectively, quarter prevalences of
463	8 to 11% and 10 to 15% were reported. It is difficult indeed to directly compare these
464	results because of the different IMI definitions used and the lack of adjustment for these
465	imperfect definitions.
466	In this study, a CNS IMI definition of \geq 100 phenotypically identical CNS cfu/ml
467	of milk was used. This less specific but more sensitive definition was chosen to optimize
468	the negative predictive value (NPV) of the diagnostic test used to diagnose the outcome,
469	but also to initially select quarter at risk of becoming infected. Essentially, a less
470	sensitive IMI definition would have lead to the incorrect inclusion of a larger number of
471	already infected quarters in the incidence analysis, which was deemed to be the most
472	important part of this study. For instance, assuming a prevalence of CNS IMI of 40%,
473	and using the Se and Sp estimates reported in Dohoo et al. (2011), when requiring \geq 200
474	CNS cfu/ml of milk, 24% of the recruited quarters would actually be already infected
475	and, thus, wrongly recruited (NPV: 76%). This proportion would be reduced to 13%
476	(NPV: 87%) with a \geq 100 CNS cfu/ml of milk IMI definition. The \geq 100 CNS cfu/ml
477	IMI definition was, therefore, chosen to reduce a selection bias that could not be handled
478	analytically. Under the same assumptions, using the \geq 100 CNS cfu/ml of milk IMI
479	definition to diagnose subsequent acquisition of a new CNS IMI would, however, result
480	in a higher, but not as spectacular, proportion of wrongly identified new IMI (20%), when
481	compared to the \geq 200 CNS cfu/ml IMI definition (12%). This potentially greater
482	misclassification bias could, however, be handled analytically with the latent class model
483	used to adjust estimates of disease frequency and of association with exposures. In fact,
484	when using such analytical treatment of misclassification bias, the choice of a specific

485 IMI definition over another should not significantly alter the results, as long as well

- 486 informed Se and Sp distributions can be specified for the chosen definition. To illustrate
- 487 this point, the presented incidence model was also ran using a \ge 200 CNS cfu/ml IMI
- 488 definition to diagnosed acquisition of a new CNS IMI, and using a similar latent class
- 489 model with Se and Sp distributions centered on 0.56 and 0.95, respectively (the Se and Sp
- 490 estimates for a \geq 200 CNS cfu/ml IMI definition reported in Dohoo et al., 2011). When
- 491 comparing measures of association between the 2 misclassification-adjusted models,
- 492 measures of association obtained using the \geq 100 cfu/ml misclassification-adjusted model
- 493 corresponded, on average, to 95% of those obtained using the \geq 200 cfu/ml IMI
- 494 misclassification-adjusted model (data not shown). Using the \geq 100 cfu/ml CNS IMI
- 495 definition, therefore, resulted in only very slightly weaker measures of association with
- 496 exposures and should not impact the results from these analyses.
- 497 Impact of CNS IMI Misclassification

498 In this study, ignoring CNS IMI misclassification yielded substantial bias of most 499 measures of disease frequency. Usually, investigators tend to rely on intuition to 500 qualitatively discuss how the misclassification bias may affect their results. In the 501 authors' opinion, relying solely on intuition is unlikely to lead to a correct appraisal of the 502 magnitude and direction of the resulting biases. Even for relatively simple analyses, such 503 as estimating IMI prevalence, the resulting bias will be influenced by 3 components: the 504 frequency of the disease in the population; the test Se; and the test Sp. While the bias can 505 very easily be assessed quantitatively, correctly appraising the combined impacts of these 506 3 components qualitatively is very difficult. As observed by Lash (2007), when asked to 507 intuitively appraise such bias, the vast majority usually fail to take into account the

frequency of the disease in the population. In this study, most would have wrongfully guessed, for instance, that the relatively low test Se for CNS IMI would result in an underestimation of the true CNS incidence.

511 Important biases were also seen on measures of association with manageable risk 512 factors. In the incidence and prevalence models, for instance, traditional regression 513 coefficients corresponded, in general, to roughly 50% of the misclassification adjusted 514 coefficients (Table 2 and 4). In the elimination model, they corresponded more or less to 515 30% of the misclassification adjusted ones (Table 3). Although bias away from the null 516 value was seen, the resulting biases were nearly always toward the null value, as would 517 be expected with non-differential misclassification of binary variables. At first sight, 518 Type I errors may seem nearly impossible with a bias toward the null value, but it is not 519 once the grossly underestimated 95% confidence intervals are taken into consideration. 520 Therefore, although direction of the biases was often predictable, these biases were 521 sufficient to lead to either type I or type II errors. In this study, pretending that the 522 outcome was measured perfectly would have lead to different recommendations to dairy 523 producers. Similar findings have been reported before by McGlothlin et al. (2008) and 524 by Tarafder et al. (2011). Finally, estimates of association with exposures reported in the 525 literature are commonly used latter on in economic studies, meta-analyses, or for the 526 computation of other epidemiologic measures such as population attributable fractions. 527 Reporting unadjusted estimates in one scientific manuscript is, therefore, very likely to 528 lead to a certain number of subsequent erroneous recommendations. 529 Results from this study clearly highlight the important impact of ignoring CNS

530 IMI misclassification. The method proposed by McInturff et al. (2004), however, can be

531	used to handle this problem and offers many particularities that make it extremely
532	interesting for mastitis research: it can correctly estimate both measures of disease
533	frequency and measures of association with exposures; it can easily deal with hierarchical
534	data structure; and, finally, uncertainty around Se and Sp estimates can be built-in.
535	CNS Epidemiology
536	As for many diseases, the rate at which new CNS IMI were acquired seemed to be
537	a stronger determinant of the herd IMI prevalence than the elimination rate. These results
538	would suggest that the control of risk factors associated with CNS IMI incidence would
539	have a greater impact over time than the control of risk factors associated with
540	elimination of existing CNS IMI. Actually, the relatively high CNS IMI incidence rate is
541	certainly a striking feature of CNS IMI epidemiology compared to other common mastitis
542	pathogens. Assuming that CNS IMI acquisitions are evenly distributed across quarters, a
543	healthy quarter would have 29% chance of getting infected in any one-month period
544	which translates into 87% chance of getting infected over a 6 month period. On the
545	NCDF farms, CNS IMI yielded by far the highest incidence rate among the mastitis
546	pathogens reported (S. Dufour, unpublished data). In contrast, S. aureus incidence rates
547	of 0.012 (Dufour et al., 2011a) and 0.019 new IMI/quarter-month (Zadoks et al., 2001)
548	have been reported. With the often short duration (Supré et al., 2011; Taponen et al.,
549	2007) and high prevalence of infection reported for CNS, that CNS would have such a
550	high IMI incidence rate was already suspected, and these results only corroborate this
551	general belief. Coagulase-negative staphylococci IMI natural elimination rates have been
552	reported before (Deluyker et al., 2005; McDougall, 1998; Taponen et al., 2006) and were
553	quite variable across the populations studied and across the IMI definitions used.

554	Although it cannot be directly compared to previously published studies, the CNS IMI
555	elimination rate of 0.79 eliminated IMI/infected quarter-month observed in this study
556	would be considered rather high. This high elimination rate could be the result of
557	specific differences on Canadian farms in either or both the CNS species found and the
558	host characteristics altering the response to these IMI. In a convenient sample of 387 of
559	the NCDF CNS isolates recovered from apparently normal milking cows and speciated
560	using gene sequencing, a large proportion (49.4%) were found to be Staphylococcus
561	chromogenes (J.R. Middleton, unpublished data). In term of most frequent CNS species,
562	therefore, the CNS isolates in this study would be comparable to those of studies
563	conducted in the U.S. (Gillespie et al., 2009), Belgium (Piessens et al., 2011; Supré et al.,
564	2011), and the Netherlands (Sampimon et al., 2009b), but would differ from those of
565	studies carried out in Sweden (Thorberg et al., 2009; Waller et al., 2011) and Finland
566	(Taponen et al., 2006). Remaining NCDF CNS isolates speciated by gene sequencing
567	were found to be mainly Staphylococcus simulans (24.0%), Staphylococcus xylosus
568	(8.8%), Staphylococcus haemolyticus (4.9%), and 16 other CNS species (12.9%) (J.R.
569	Middleton, unpublished data).
570	One drawback of this study was the consideration of the CNS retrieved from

NCDF farms as one homogeneous group. As can be seen from the small sample of CNS isolates that could be speciated, the isolates studied could be further differentiated into a few groups that could potentially show a certain level of heterogeneity in term of incidence and elimination rates, as well as risk factors for these. Because of the large number of isolates involved, identification of the CNS isolates at the species level was not available when the analyses were carried out. Plans for speciation of a larger sample

577 of the NCDF CNS isolates have been laid and, in future research, this issue will be 578 resolved. The present study should, therefore, be regarded as an exploratory study on the 579 epidemiology of CNS as a group, while keeping in mind the possible heterogeneity of the 580 isolates that constitute this group. In addition, since CNS IMI duration or persistence 581 could not be precisely established, this important aspect was not addressed in this study. 582 The presented study was strictly focused on acquisition and elimination of CNS IMI over 583 3-week periods and on presence of CNS IMI. 584

585 Manageable Risk Factors

586 Many management practices were associated with the odds of having a prevalent 587 CNS IMI. It is important to realize that these associations can only be mediated by an 588 effect on CNS IMI incidence, elimination, or both. In addition, when measures of disease 589 prevalence on their own are used, it is difficult to identify the correct time-order of 590 occurrence between exposure and disease, and this can potentially lead to the 591 identification of spurious associations. For these reasons, less consideration should be 592 given to management practices associated solely with CNS IMI prevalence in particular 593 or with only one outcome in general. For a thorough interpretation of the study's results, 594 the authors suggest consideration of a holistic analysis and interpretation of associations 595 with all 3 outcomes jointly. A conceptual chart of the associations between manageable 596 risk factors and prevalence, incidence, and elimination of CNS IMI based on the results 597 from Tables 2, 3, and 4 is presented in Fig. 2, and should help the reader to bridge this 598 gap.

599	As a starting point, it is worth mentioning that all risk factors associated with CNS
600	IMI incidence were also associated with IMI prevalence. Conversely, a few of the risk
601	factors associated with CNS IMI prevalence were not associated with IMI incidence.
602	These differences may be explained, in part, by the higher power of the study for the
603	prevalence dataset for which the number of observations and the distribution of the
604	outcome were superior. Only one of the management practices studied - the type of
605	bedding used in stalls or pens - showed similar associations with all 3 outcomes. Matos
606	et al. (1991) have already reported disparities in bacterial load between bedding types and
607	between fresh and used bedding. These researchers observed different distributions of
608	staphylococci species among bedding types and reported these species as common in the
609	cows' environment. Results from the present study suggest that bedding type plays a
610	substantial role in CNS epidemiology and, based on these previously published results,
611	this role is probably mediated through differential selection of CNS species that are more
612	or less competent at causing IMI. When compared to straw bedding, the use of sand
613	bedding showed a desirable association with all 3 outcomes. In the literature, sand
614	bedding has been consistently associated with lower SCC (Dufour et al., 2011b).
615	Compared to organic bedding, very little substrate is available to support bacterial growth
616	in an inorganic bedding, such as sand, and this may explain the lower IMI incidence and
617	prevalence observed. Given that the odds of IMI elimination was greater for sand
618	bedding, it also suggests that more poorly host-adapted CNS species or strains would be
619	found in the environment of sand bedded barns. Our results also suggest that, among the
620	organic bedding used, wood-based product would support either a lower quantity of CNS,
621	less well host-adapted CNS species, or both. This is supported by results from Matos et

622 al. (1991) who reported generally decreasing bacterial counts between hay, straw, and 623 sawdust beddings as well as different CNS species populations between bedding types. 624 In their study, the very different CNS populations found in alfalfa hay could explain the 625 lower odds of IMI elimination observed in the present study. 626 In this study, quarters of cows that had access to pasture during the sampling 627 period had lower IMI incidence and prevalence, which suggests a lower CNS infection 628 pressure from pasture compared to confinement housing. These results are in contrast 629 with those of Sampimon et al. (2009b) who found a higher herd CNS prevalence in herds 630 where cows had access to pasture during the outdoor season. In that Dutch study, 631 however, the yearly herd CNS prevalence was used as the outcome rather than the 632 seasonal prevalence. The direct impact of pasture access, therefore, would be difficult to 633 evaluate. In addition, it is likely that the very different weather and pasture conditions prevailing in the Netherlands compared to Canada could have led to these different 634 635 observations. 636 The only other manageable risk factor associated with at least 2 of the studied 637 outcomes was to provide a bonus for milk quality to the persons milking. It is difficult, 638 however, to clearly evaluate the direct effect of such practice. Providing a bonus for milk 639 quality could, for instance, motivate the milkers to be more thorough and to follow more 640 closely the recommended milking procedures, which would help prevent acquisition of 641 new CNS IMI. The association seen would then be an indirect effect of this practice. On 642 the other hand, providing such bonus could also be an indication of a more proactive 643 attitude toward udder health in general, which would, in turn, lead to a greater adoption

644	of other recommended practices. The association observed would then be a spurious
645	association resulting from residual confounding by general attitude toward udder health.
646	A few manageable risk factors related to maternity pen management, cow
647	cleanliness, purchase habits, and monitoring of udder health were associated solely with
648	CNS IMI elimination. Further investigation into these possible risk factors should be
649	undertaken before drawing any conclusions. Similarly, some practices related to milking
650	procedures and maternity pen management were associated with IMI prevalence
651	exclusively. Again, it is recommended that caution be used in drawing conclusions in
652	these cases.
653	Two cornerstones of every mastitis control program, blanket dry cow therapy
654	(DCT) and PMTD, were already used by a vast majority of the NCDF herds (88% for
655	blanket DCT, and 99% for PMTD). Because of the low number of dairy producers not
656	using these practices, the power to find significant associations between CNS IMI
657	outcomes and blanket DCT or PMTD was limited. These practices should certainly not
658	be rejected as potential important risk factors for CNS IMI based on the study's results.
659	One should instead consider the manageable risk factors identified in this study as
660	practices that could be use to control CNS IMI in herds already using blanket DCT and
661	PMTD.
662	Finally, as mentioned before, it is still unclear whether or not CNS IMI are indeed
663	detrimental to udder health. The SCC increases that have been generally reported for
664	CNS IMI, though, seem to indicate that prevention of these IMI, at least in low BMSCC
665	herds, is a cautious approach. In addition, most of the manageable risk factors for CNS
666	IMI identified in this study, have shown desirable association in previous studies with

other measures of udder health. It would, therefore, be very unlikely that implementing

these practices to control CNS IMI would result in a general deterioration of udder health.

669 Potential Bias

670 Like most exploratory studies, many potential biases may have led to the observed 671 estimates of association. First of all, the herds selected were a convenience sample of 672 Canadian dairy herds and, although they shared some similar attributes with the Canadian 673 dairy herd population (Reyher et al., 2011), they may have differed from the target 674 population in terms of CNS IMI burden or of management practices used. The resulting 675 selection bias would affect estimates of CNS IMI prevalence, incidence, and elimination. 676 It would, however, be much less likely to affect estimates of association between 677 manageable risk factors and CNS IMI outcomes. 678 Secondly, although an effort was made to adjust for the most obvious 679 confounders, it is likely that residual confounding still may bias the presented estimates 680 to some extent. In a previously published study on manageable risk factors associated 681 with S. aureus IMI (Dufour et al., 2011a), however, and using an extended and thorough 682 investigation procedure to identify confounding, very few of the theoretically identified confounders were actually modifying the reported estimates by a significant amount (S. 683 684 Dufour, unpublished data). So, in the opinion of the authors, although the direction of 685 residual confounding bias is unpredictable, its magnitude is likely to be small.

Finally, despite the use of a latent class model approach to adjust the presented estimates for disease misclassification, and despite the use of Se and Sp thresholds for explanatory variables, a limited degree of misclassification bias probably remains. The level of control of misclassification bias that can be achieve using the latent class model

690 approach, or any other misclassification adjustment approach, is directly related to the 691 exactitude of the misclassification parameters (the Se and Sp) chosen (Lash et al., 2009). 692 In this study, since the Se and Sp estimates were obtained from an internal validation 693 study using a sample of the studied CNS isolates, the misclassification parameters used 694 are likely to be very close to the true Se and Sp values. Any remaining misclassification 695 bias should, therefore, be fairly small. 696 697 **CONCLUSIONS** 698 699 Like a number of infectious diseases, prevention seems to be the key to long-term 700 CNS IMI control. When an outcome is measured with an obviously imperfect diagnostic 701 procedure, such as bacteriological culture for CNS, determining the direction and 702 magnitude of the resulting bias on estimates of prevalence, incidence, elimination, or on 703 associations with risk factors rapidly becomes intractable. In these situations, using a 704 technique accounting for the test limitations would provide better estimates and would 705 improved comparability between studies. In herds already employing blanket DCT and 706 PMTD, many additional practices can be implemented to prevent acquisition of new CNS 707 IMI. These practices seemed to be mainly related to management of the environment of 708 the cow such as bedding condition or pasture access. 709 710 **ACKNOWLEDGEMENTS**

711

712	The authors wish to thank all the dairy producers and animal health technicians
713	who participated to this study. This research was financed by the Natural Sciences and
714	Engineering Research Council of Canada, Alberta Milk, Dairy Farmers of New
715	Brunswick, Dairy Farmers of Nova Scotia, Dairy Farmers of Ontario and Dairy Farmers
716	of Prince Edward Island, Novalait Inc., Dairy Farmers of Canada, Canadian Dairy
717	Network, Agriculture and Agri-Food Canada, Public Health Agency of Canada,
718	Technology PEI Inc., Université de Montréal and University of Prince Edward Island,
719	through the Canadian Bovine Mastitis Research Network.
720	
721	REFERENCES
722	
723	Compton, C. W., C. Heuer, K. Parker, and S. McDougall. 2007. Epidemiology of mastitis
724	in pasture-grazed peripartum dairy heifers and its effects on productivity. J. Dairy
725	Sci. 90(9):4157-4170.
726	Deluyker, H. A., S. N. Van Oye, and J. F. Boucher. 2005. Factors affecting cure and
727	somatic cell count after pirlimycin treatment of subclinical mastitis in lactating
728	cows. J. Dairy Sci. 88(2):604-614.
729	Djabri, B., N. Bareille, F. Beaudeau, and H. Seegers. 2002. Quarter milk somatic cell
730	count in infected dairy cows: a meta-analysis. Vet. Res. 33(4):335-357.
731	Dohoo, I., W. Martin, and H. Stryhn. 2009. Veterinary epidemiologic research. 2nd ed.
732	VER Inc, Charlottetown, PE, Canada.

Journal of Dairy Science

733	Dohoo, I. R., J. Smith, S. Andersen, D. F. Kelton, and S. Godden. 2011. Diagnosing
734	intramammary infections: evaluation of definitions based on a single milk sample.
735	J. Dairy Sci. 94(1):250-261.
736	Dufour, S., H. W. Barkema, L. DesCôteaux, T. J. DeVries, I. R. Dohoo, K. Reyher, J. P.
737	Roy, and D. T. Scholl. 2010. Development and validation of a bilingual
738	questionnaire for measuring udder health related management practices on dairy
739	farms. Prev. Vet. Med. 95(1-2):74-85.
740	Dufour, S., I. R. Dohoo, H. W. Barkema, L. Des Côteaux, T. J. DeVrie, K. K. Reyher, J
741	P. Roy, and D. T. Scholl. 2011a. Manageable risk factors associated with the
742	lactational incidence, elimination, and prevalence of Staphylococcus aureus
743	intramammary infections in dairy cows. J. Dairy Sci. In press.
744	Dufour, S., A. Frechette, H. W. Barkema, A. Mussell, and D. T. Scholl. 2011b. Invited
745	review: effect of udder health management practices on herd somatic cell count. J.
746	Dairy Sci. 94(2):563-579.
747	Gillespie, B. E., S. I. Headrick, S. Boonyayatra, and S. P. Oliver. 2009. Prevalence and
748	persistence of coagulase-negative Staphylococcus species in three dairy research
749	herds. Vet. Microbiol. 134(1-2):65-72.
750	Gustafson, P. 2004. Measurement error and misclassification in statistics and
751	epidemiology: impacts and Bayesian adjustments. Interdisciplinary statistics.
752	Chapman & Hall/CRC, Boca Raton.
753	Höfler, M. 2005. The effect of misclassification on the estimation of association: a
754	review. Int. J. Methods Psychiatr. Res. 14(2):92-101.

755	Hogan, J. S., R. N. Gonzalez, R. J. Harmon, S. C. Nickerson, S. P. Oliver, J. W. Pankey,
756	and K. L. Smith. 1999. Laboratory Handbook on Bovine Mastitis. Madison, WI.
757	Lash, T. L. 2007. Heuristic thinking and inference from observational epidemiology.
758	Epidemiology 18(1):67-72.
759	Lash, T. L., M. P. Fox, and A. K. Fink. 2009. Applying quantitative bias analysis to
760	epidemiologic data. Statistic for biology and health. Springer, New York.
761	Lash, T. L., M. P. Fox, S. S. Thwin, A. M. Geiger, D. S. Buist, F. Wei, T. S. Field, M. U.
762	Yood, F. J. Frost, V. P. Quinn, M. N. Prout, and R. A. Silliman. 2007. Using
763	probabilistic corrections to account for abstractor agreement in medical record
764	reviews. Am. J. Epidemiol. 165(12):1454-1461.
765	Matos, J. S., D. G. White, R. J. Harmon, and B. E. Langlois. 1991. Isolation of
766	Staphylococcus aureus from sites other than the lactating mammary gland. J.
767	Dairy Sci. 74(5):1544-1549.
768	Matthews, K. R., R. J. Harmon, and B. A. Smith. 1990. Protective effect of
769	Staphylococcus chromogenes infection against Staphylococcus aureus infection in
770	the lactating bovine mammary gland. J. Dairy Sci. 73(12):3457-3462.
771	McDougall, S. 1998. Efficacy of two antibiotic treatments in curing clinical and
772	subclinical mastitis in lactating dairy cows. N. Z. Vet. J. 46(6):226-232.
773	McGlothlin, A., J. D. Stamey, and J. W. Seaman, Jr. 2008. Binary regression with
774	misclassified response and covariate subject to measurement error: a bayesian
775	approach. Biom. J. 50(1):123-134.
776	McInturff, P., W. O. Johnson, D. Cowling, and I. A. Gardner. 2004. Modelling risk when
777	binary outcomes are subject to error. Stat. Med. 23(7):1095-1109.

Journal of Dairy Science

778	Neijenhuis, F., H. W. Barkema, H. Hogeveen, and J. P. Noordhuizen. 2000.
779	Classification and longitudinal examination of callused teat ends in dairy cows. J.
780	Dairy Sci. 83(12):2795-2804.
781	Ntzoufras, I. 2009. Bayesian modeling using WinBUGS. Wiley series in computational
782	statistics. Wiley, Hoboken, N.J.
783	Piepers, S., G. Opsomer, H. W. Barkema, A. de Kruif, and S. De Vliegher. 2010. Heifers
784	infected with coagulase-negative staphylococci in early lactation have fewer cases
785	of clinical mastitis and higher milk production in their first lactation than
786	noninfected heifers. J. Dairy Sci. 93(5):2014-2024.
787	Piepers, S., K. Peeters, G. Opsomer, H. W. Barkema, K. Frankena, and S. De Vliegher.
788	2011. Pathogen group specific risk factors at herd, heifer and quarter levels for
789	intramammary infections in early lactating dairy heifers. Prev. Vet. Med. 99(2-
790	4):91-101.
791	Piessens, V., E. Van Coillie, B. Verbist, K. Supre, G. Braem, A. Van Nuffel, L. De
792	Vuyst, M. Heyndrickx, and S. De Vliegher. 2011. Distribution of coagulase-
793	negative Staphylococcus species from milk and environment of dairy cows differs
794	between herds. J. Dairy Sci. 94(6):2933-2944.
795	Pyörälä, S. and S. Taponen. 2009. Coagulase-negative staphylococci-emerging mastitis
796	pathogens. Vet. Microbiol. 134(1-2):3-8.
797	Reyher, K. K., S. Dufour, H. W. Barkema, L. Des Côteaux, T. J. Devries, I. R. Dohoo, G.
798	P. Keefe, J. P. Roy, and D. T. Scholl. 2011. The National Cohort of Dairy Farms-
799	A data collection platform for mastitis research in Canada. J. Dairy Sci.
800	94(3):1616-1626.

801	Sampimon, O., H. W. Barkema, I. Berends, J. Sol, and T. Lam. 2009a. Prevalence of
802	intramammary infection in Dutch dairy herds. J. Dairy Res. 76(2):129-136.
803	Sampimon, O. C., H. W. Barkema, I. M. Berends, J. Sol, and T. J. Lam. 2009b.
804	Prevalence and herd-level risk factors for intramammary infection with coagulase-
805	negative staphylococci in Dutch dairy herds. Vet. Microbiol. 134(1-2):37-44.
806	Sampimon, O., B. H. van den Borne, I. Santman-Berends, H. W. Barkema, and T. Lam.
807	2010. Effect of coagulase-negative staphylococci on somatic cell count in Dutch
808	dairy herds. J. Dairy Res. 77:318-324.
809	Schukken, Y. H., R. N. Gonzalez, L. L. Tikofsky, H. F. Schulte, C. G. Santisteban, F. L.
810	Welcome, G. J. Bennett, M. J. Zurakowski, and R. N. Zadoks. 2009. CNS
811	mastitis: nothing to worry about? Vet. Microbiol. 134(1-2):9-14.
812	Supré, K., F. Haesebrouck, R. N. Zadoks, M. Vaneechoutte, S. Piepers, and S. De
813	Vliegher. 2011. Some coagulase-negative Staphylococcus species affect udder
814	health more than others. J. Dairy Sci. 94(5):2329-2340.
815	Taponen, S., J. Koort, J. Bjorkroth, H. Saloniemi, and S. Pyörälä. 2007. Bovine
816	intramammary infections caused by coagulase-negative staphylococci may persist
817	throughout lactation according to amplified fragment length polymorphism-based
818	analysis. J. Dairy Sci. 90(7):3301-3307.
819	Taponen, S., H. Simojoki, M. Haveri, H. D. Larsen, and S. Pyörälä. 2006. Clinical
820	characteristics and persistence of bovine mastitis caused by different species of
821	coagulase-negative staphylococci identified with API or AFLP. Vet. Microbiol.
822	115(1-3):199-207.

823	Tarafder, M. R., H. Carabin, S. T. McGarvey, L. Joseph, E. Balolong, Jr., and R. Olveda.
824	2011. Assessing the impact of misclassification error on an epidemiological
825	association between two helminthic infections. PLoS Negl. Trop. Dis. 5(3):e995.
826	Tenhagen, B. A., G. Koster, J. Wallmann, and W. Heuwieser. 2006. Prevalence of
827	mastitis pathogens and their resistance against antimicrobial agents in dairy cows
828	in Brandenburg, Germany. J. Dairy Sci. 89(7):2542-2551.
829	Thorberg, B. M., M. L. Danielsson-Tham, U. Emanuelson, and K. Persson Waller. 2009.
830	Bovine subclinical mastitis caused by different types of coagulase-negative
831	staphylococci. J. Dairy Sci. 92(10):4962-4970.
832	Waller, K. P., A. Aspan, A. Nyman, Y. Persson, and U. G. Andersson. 2011. CNS species
833	and antimicrobial resistance in clinical and subclinical bovine mastitis. Vet.
834	Microbiol. 152(1-2):112-116.
835	White, L. J., T. J. Lam, Y. H. Schukken, L. E. Green, G. F. Medley, and M. J. Chappell.
836	2006. The transmission and control of mastitis in dairy cows: a theoretical
837	approach. Prev. Vet. Med. 74(1):67-83.
838	Zadoks, R. N., H. G. Allore, H. W. Barkema, O. C. Sampimon, G. J. Wellenberg, Y. T.
839	Grohn, and Y. H. Schukkent. 2001. Cow- and quarter-level risk factors for
840	Streptococcus uberis and Staphylococcus aureus mastitis. J. Dairy Sci.
841	84(12):2649-2663.
842	

844 Table 1. Prior distributions used in the latent class model for bacteriological culture

⁸⁴⁵ sensitivity (Se) and specificity (Sp).

Analysis	Param. ¹	Distribution	Mean ²	Limits ³	
				Lower	Upper
Incidence and elimination	Se	Beta(165, 39.0)	0.81	0.76	0.86
	Sp	Beta(145, 22.5)	0.87	0.82	0.92
Prevalence					
Series with 1 culture result	Se	Beta(165, 39.0)	0.81	0.76	0.86
	Sp	Beta(145, 22.5)	0.87	0.82	0.92
Series with 2 results ⁴	Se	Beta(92, 4.0)	0.96	0.91	1.00
	Sp	Beta(174, 55.5)	0.76	0.71	0.81
Series with 3 results ⁴	Se	Beta(68, 1.5)	0.98	0.93	1.00
	Sp	Beta(172, 89.0)	0.66	0.61	0.71

846 ¹ Parameter estimated.

² All distributions were centered on the parameter estimate obtained using CBMRN

848 isolates and reported in Dohoo et al. (2011)

³ Lower and upper truncation of the distributions were implemented to avoid selection of

less probable and sometimes inappropriate Se and Sp combinations and improve MCMC

851 convergence. Lower and upper limits correspond to the parameter estimate reported in

852 Dohoo et al. $(2011) \pm 5$ percentage-points.

⁴ Whenever CNS IMI status were determined using 2 or 3 bacteriological culture results

interpreted in parallel, the Se and Sp estimates reported in Dohoo et al. (2011) were

855 adjusted accordingly.

- 857 Table 2. Final multivariable cross-classified hierarchical model of the relationship
- 858 between manageable risk factors and odds of acquisition of new coagulase-negative
- 859 staphylococci (CNS) IMI without and with adjustment for outcome misclassification.

	Non-ao	djusted e	stimates	Misclassification adjusted estimates			
Independent variable	OR ^a	OR percentiles		OR ^a		rcentiles	
		2.5 th	97.5 th		2.5 th	97.5 th	
Housing type ^b							
Tie-stall	Ref	Ref	Ref	Ref	Ref	Ref	
Free-stall	0.97	0.75	1.3	0.91	0.54	1.5	
Bedded pack barn	0.72	0.46	1.1	0.51	0.18	1.3	
Outside access							
No outside access	Ref	Ref	Ref	Ref	Ref	Ref	
Access to exercise yard	0.92	0.63	1.4	0.81	0.40	1.6	
Access to pasture	0.71*	0.61	0.81	0.52*	0.38	0.70	
Type of bedding							
Straw	Ref	Ref	Ref	Ref	Ref	Ref	
Sand	0.51*	0.33	0.78	0.27*	0.10	0.64	
Wood products	0.73*	0.57	0.94	0.55*	0.31	0.90	
Нау	1.0	0.58	1.8	1.0	0.36	3.0	
Wood and straw	0.90	0.72	1.1	0.84	0.55	1.3	
Milkers receive bonus for milk	0.59*	0.36	0.96	0.33*	0.11	0.91	
quality							
% of clinical mastitis (CM) cases							
treated							
< 50%	Ref	Ref	Ref	Ref	Ref	Ref	
50 to 90%	0.88	0.66	1.2	0.76	0.43	1.3	
$\geq 90\%$	1.3	0.98	1.6	1.6	0.98	2.7	

860 ^a Median odds ratio estimate

861 ^b Variable kept in the model as confounding variable

* OR statistically significant (95% credibility interval not including the null value)

- 863 Table 3. Final multivariable cross-classified hierarchical model of the relationship
- 864 between manageable risk factors and odds of elimination of coagulase-negative
- 865 staphylococci (CNS) IMI without and with adjustment for outcome misclassification.

Independent variable	Non-a	djusted e	estimates	Misclassification adjusted estimates			
	OR ^a	OR pe	OR percentiles		OR percentiles		
		2.5 th	97.5 th		2.5 th	97.5 th	
Housing type ^b							
Tie-stall	Ref	Ref	Ref	Ref	Ref	Ref	
Free-stall	1.2	0.94	1.6	1.9	0.80	4.4	
Bedded pack barn	1.2	0.79	2.0	2.0	0.51	8.6	
Type of bedding							
Straw	Ref	Ref	Ref	Ref	Ref	Ref	
Sand	1.7*	1.1	2.5	4.9*	1.4	21.0	
Wood products	1.1	0.92	1.4	1.6	0.79	3.2	
Hay	0.91	0.62	1.3	0.67	0.18	2.3	
Wood and straw	1.5*	1.2	1.8	3.3*	1.7	7.9	
Lower leg cleanliness score							
Very clean	Ref	Ref	Ref	Ref	Ref	Ref	
Clean	0.90	0.73	1.1	0.82	0.42	1.6	
Dirty	1.1	0.90	1.4	1.7	0.83	3.6	
Very dirty	1.4	1.0	1.8	2.9*	1.2	8.1	
Distance neckrail-curb							
< 1.7m	Ref	Ref	Ref	Ref	Ref	Ref	
1.7 to 1.8m	1.2	0.94	1.5	1.8	0.83	4.3	
1.8 to 1.9m	0.93	0.65	1.3	0.76	0.23	2.4	
>1.9m	0.91	0.69	1.2	0.74	0.30	1.8	
Type of bedding in maternity							
pens (MP)							
Wood products	Ref	Ref	Ref	Ref	Ref	Ref	
Straw	0.59*	0.45	0.76	0.20*	0.07	0.51	
Hay	0.45	0.11	1.8	0.06	< 0.01	6.6	
Wood products and straw	0.65*	0.47	0.90	0.26*	0.08	0.82	
Bedding added to MP							
\geq once/d	Ref	Ref	Ref	Ref	Ref	Ref	
once/d to once/mo	0.72*	0.60	0.80	0.37*	0.18	0.69	
< once/mo	0.72	0.45	1.2	0.46	0.09	2.0	
After every calving	0.70*	0.54	0.92	0.34*	0.13	0.81	
As needed	1.7	0.58	5.0	9.4	0.24	>100.0	

868 Table 3. (Continued)

Independent variable	Non-adjusted estimates			Misclassification adjusted estimates		
	OR ^a	OR percentiles		OR ^a	OR percentiles	
		2.5 th	97.5 th		2.5 th	97.5 th
Measures milk conductivity	0.57*	0.42	0.76	0.16*	0.05	0.41
Ration balanced based on forage analyses	0.63	0.47	1.1	0.32	0.04	1.6
Purchase habits in preceding 6						
mo						
Never buys cattle	Ref	Ref	Ref	Ref	Ref	Ref
Usually buy cattle but not in last 6 mo	0.42	0.17	1.1	0.04	< 0.01	1.0
Purchased only heifers	1.2	0.94	1.5	1.8	0.84	4.0
Purchased cows	1.3*	1.1	1.5	2.3*	1.4	3.9

- 869 ^a Median odds ratio estimate
- ^b Variable kept in the model as confounding variable
- ^c Median odds ratio estimate and 2.5th and 97.5th percentiles are presented per increase of
- 872 30 days in milk
- * OR statistically significant (95% credibility interval not including the null value)

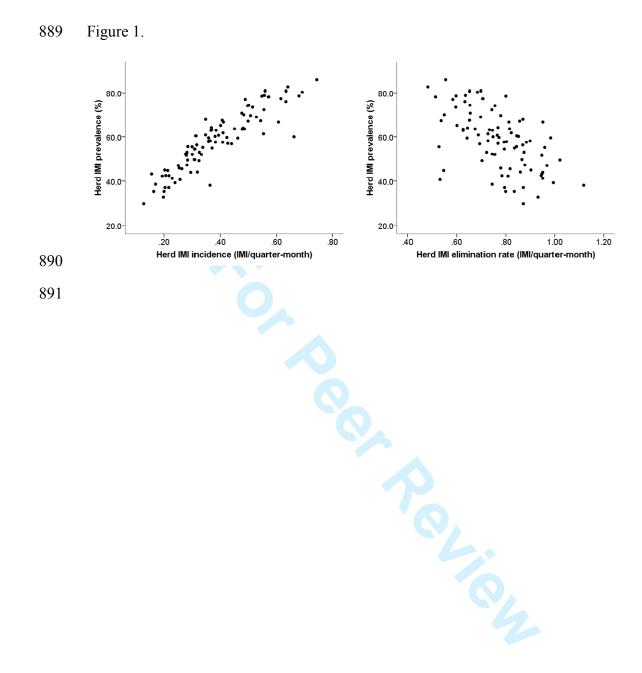
- 875 Table 4. Final multivariable cross-classified hierarchical model of the relationship
- 876 between manageable risk factors and odds of a prevalent coagulase-negative
- 877 staphylococci (CNS) IMI without and with adjustment for outcome misclassification.

Independent variable	Non-adjusted estimates			Misclassification adjusted estimates		
	OR ^a	OR		OR ^a	OR percentiles	
	-		entiles	-	- 1	
		2.5 th	97.5 th		2.5^{th}	97.5 th
Housing type ^b						
Tie-stall	Ref	Ref	Ref	Ref	Ref	Ref
Free-stall	1.2	0.83	1.7	1.5	0.78	2.9
Bedded pack barn	0.76	0.41	1.4	0.73	0.23	2.5
Herd mean SCS in preceding 24	1.1	0.83	1.4	1.3	0.80	2.1
mo ^b						
Outside access						
No outside access	Ref	Ref	Ref	Ref	Ref	Ref
Access to exercise yard	1.3	0.85	1.9	1.5	0.75	3.2
Access to pasture	0.80*	0.68	0.93	0.71*	0.52	0.97
Type of bedding						
Straw	Ref	Ref	Ref	Ref	Ref	Ref
Sand	0.58*	0.36	0.96	0.39*	0.16	0.96
Wood products	0.70*	0.54	0.92	0.48*	0.29	0.79
Hay	3.9*	1.7	8.7	7.8*	2.0	37.3
Wood and straw	0.72*	0.56	0.91	0.56*	0.36	0.87
Type of bedding by herd SCS						
Straw by herd SCS	Ref	Ref	Ref	Ref	Ref	Ref
Sand by herd SCS	0.93	0.49	1.8	0.95	0.25	3.6
Wood products by herd SCS	1.0	0.76	1.4	1.1	0.65	1.9
Hay by herd SCS	0.21*	0.11	0.41	0.11*	0.03	0.29
Wood and straw by herd SCS	0.97	0.69	1.4	0.91	0.48	1.8
Distance neckrail-curb						
< 1.7m	Ref	Ref	Ref	Ref	Ref	Ref
1.7 to 1.8m	0.85	0.58	1.2	0.63	0.30	1.3
1.8 to 1.9m	0.69	0.40	1.2	0.43	0.15	1.1
>1.9m	1.1	0.73	1.7	0.99	0.43	2.1
Cows left >7d in MP after calving	0.38*	0.18	0.82	0.12*	0.02	0.57
Milkers receive bonus for milk quality	0.59	0.33	1.0	0.27*	0.08	0.89
<i>S. aureus</i> cows milked last or with a specific unit	1.3	0.95	1.8	1.6	0.89	3.3

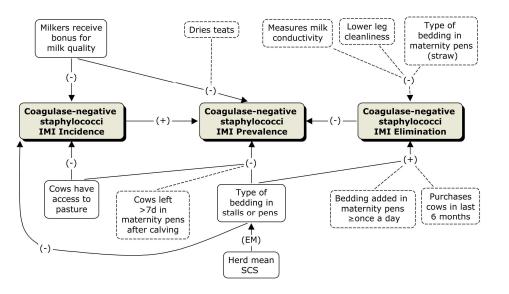
879 Table 4. (Continued)

Independent variable	Non-adjusted estimates			Misclassification adjusted estimates			
	OR ^a	OR percentiles		OR ^a	OR percentiles		
		2.5 th	97.5 th		2.5 th	97.5 th	
Teat drying method							
No drying	Ref	Ref	Ref	Ref	Ref	Ref	
Paper towels	0.67*	0.51	0.89	0.51*	0.32	0.85	
Reusable cloth towels	0.63*	0.46	0.86	0.39*	0.21	0.73	
Feed total mixed ration	1.3*	1.1	1.7	1.6	1.0	2.6	
% of clinical mastitis (CM) cases							
treated							
< 50%	Ref	Ref	Ref	Ref	Ref	Ref	
50 to 90%	0.85	0.63	1.1	0.70	0.42	1.2	
$\geq 90\%$	1.2	0.88	1.5	1.4	0.85	2.2	
Herd SCS at beginning of sampling period	1.2	0.99	1.4	1.3	0.96	1.7	

^a Median odds ratio estimate


^b Variable kept in the model as confounding variable

* OR statistically significant (95% credibility interval not including the null value).



- 883 Figure 1. Scatter plots of the herd coagulase-negative staphylococci (CNS) IMI
- 884 prevalence against herd IMI incidence and elimination rates.
- 885
- 886 Figure 2. Conceptual chart of associations between manageable risk factors and
- 887 coagulase-negative staphylococci (CNS) IMI incidence, elimination, and prevalence.

ylocu

892 Figure 2.

(-):Associated with lower coagulase-negative staphylococci IMI incidence, elimination, or prevalence (+):Associated with higher coagulase-negative staphylococci IMI incidence, elimination, or prevalence (EM):Effect modifier

(EM):Effect modifier Dashed boxes and connection lines are used for practices associated with only one of the studied outcomes