340 research outputs found

    The 2016 Power Trading Agent Competition

    Get PDF
    This is the specification for the Power Trading Agent Competition for 2016 (Power TAC 2016). Power TAC is a competitive simulation that models a “liberalized” retail electrical energy market, where competing business entities or “brokers” offer energy services to customers through tariff contracts, and must then serve those customers by trading in a wholesale market. Brokers are challenged to maximize their profits by buying and selling energy in the wholesale and retail markets, subject to fixed costs and constraints; the winner of an individual “game” is the broker with the highest bank balance at the end of a simulation run. Costs include fees for publication and withdrawal of tariffs, and distribution fees for transporting energy to their contracted customers. Costs are also incurred whenever there is an imbalance between a broker’s total contracted energy supply and demand within a given time slot. The simulation environment models a wholesale market, a regulated distribution utility, and a population of energy customers, situated in a real location on Earth during a specific period for which weather data is available. The wholesale market is a relatively simple call market, similar to many existing wholesale electric power markets, such as Nord Pool in Scandinavia or FERC markets in North America, but unlike the FERC markets we are modeling a single region, and therefore we approximate locational-marginal pricing through a simple manipulation of the wholesale supply curve. Customer models include households, electric vehicles, and a variety of commercial and industrial entities, many o

    The 2017 Power Trading Agent Competition

    Get PDF
    This is the specification for the Power Trading Agent Competition for 2017 (Power TAC 2017). Power TAC is a competitive simulation that models a “liberalized” retail electrical energy market, where competing business entities or “brokers” offer energy services to customers through tariff contracts, and must then serve those customers by trading in a wholesale market. Brokers are challenged to maximize their profits by buying and selling energy in the wholesale and retail markets, subject to fixed costs and constraints; the winner of an individual “game” is the broker with the highest bank balance at the end of a simulation run. Costs include fees for publication and withdrawal of tariffs, and distribution fees for transporting energy to their contracted customers. Costs are also incurred whenever there is an imbalance between a broker’s total contracted energy supply and demand within a given time slot. The simulation environment models a wholesale market, a regulated distribution utility, and a population of energy customers, situated in a real location on Earth during a specific period for which weather data is available. The wholesale market is a relatively simple call market, similar to many existing wholesale electric power markets, such as Nord Pool in Scandinavia or FERC markets in North America, but unlike the FERC markets we are modeling a single region, and therefore we approximate locational-marginal pricing through a simple manipulation of the wholesale supply curve. Customer models include households, electric vehicles, and a variety of commercial and industrial entities, many of which have production capacity such as solar panels or wind turbines. All have “real-time” metering to support allocation of their hourly supply and demand to their subscribed brokers, and all are approximate ut

    The 2020 Power Trading Agent Competition

    Get PDF
    This is the specification for the Power Trading Agent Competition for 2020 (Power TAC 2020). Power TAC is a competitive simulation that models a “liberalized” retail electrical energy market, where competing business entities or “brokers” offer energy services to customers through tariff contracts, and must then serve those customers by trading in a wholesale market. Brokers are challenged to maximize their profits by buying and selling energy in the wholesale and retail markets, subject to fixed costs and constraints; the winner of an individual “game” is the broker with the highest bank balance at the end of a simulation run. Costs include fees for publication and withdrawal of tariffs, for rectifying supply-demand imbalances, for contributions to peak demand, and for customer connections. The simulation environment models a wholesale market, a regulated distribution utility, and a population of energy customers, situated in a real location on Earth during a specific period for which weather data is available. The wholesale market is a relatively simple call market, similar to many existing wholesale electric power markets, such as Nord Pool in Scandinavia or FERC markets in North America, but unlike the FERC markets we are modeling a single region, and therefore we approximate the effects of locational-marginal pricing through manipulation of the wholesale supply curve. Customer models include households, electric vehicles, and a variety of commercial and industrial entities, many of whom have production capacity suc

    The 2013 Power Trading Agent Competition

    Get PDF
    This is the specification for the Power Trading Agent Competition for 2013 (Power TAC 2013). Power TAC is a competitive simulation that models a “liberalized” retail electrical energy market, where competing business entities or “brokers” offer energy services to customers through tariff contracts, and must then serve those customers by trading in a wholesale market. Brokers are challenged to maximize their profits by buying and selling energy in the wholesale and retail markets, subject to fixed costs and constraints. Costs include fees for publication and withdrawal of tariffs, and distribution fees for transporting energy to their contracted customers. Costs are also incurred whenever there is an imbalance between a broker’s total contracted energy supply and demand within a given time slot. The simulation environment models a wholesale market, a regulated distribution utility, and a population of energy customers, situated in a real location on Earth during a specific period for which weather data is available. The wholesale market is a relatively simple call market, similar to many existing wholesale electric power markets, such as Nord Pool in Scandinavia or FERC markets in North America, but unlike the FERC markets we are modeling a single region, and therefore we do not model location-marginal pricing. Customer models include households and a variety of commercial and industrial entities, many of which have production capacity (such as solar panels or wind turbines) as well as electric vehicles. All have “real-time” metering to support allocation of their hourly supply and demand to their subscribed brokers, and all are approximate utility maximizers with respect to tariff selection, although the factors making up their utility functions may include aversion to change and complexity that can retard uptake of marginally better tariff offers. The distribution utility models the regulated natural monopoly that owns the regional distribution network, and is responsible for maintenance of its infrastructure and for real-time balancing of supply and demand. The balancing process is a market-based mechanism that uses economic incentives to encourage brokers to achieve balance within their portfolios of tariff subscribers and wholesale market positions, in the face of stochastic customer behaviors and weather-dependent renewable energy sources. The broker with the highest bank balance at the end of the simulation wins

    The 2012 Power Trading Agent Competition

    Get PDF
    This is the specification for the Power Trading Agent Competition for 2012 (Power TAC 2012). Power TAC is a competitive simulation that models a “liberalized” retail electrical energy market, where competing business entities or “brokers” offer energy services to customers through tariff contracts, and must then serve those customers by trading in a wholesale market. Brokers are challenged to maximize their profits by buying and selling energy in the wholesale and retail markets, subject to fixed costs and constraints. Costs include fees for publication and withdrawal of tariffs, and distribution fees for transporting energy to their contracted customers. Costs are also incurred whenever there is an imbalance between a broker’s total contracted energy supply and demand within a given time slot. The simulation environment models a wholesale market, a regulated distribution utility, and a population of energy customers, situated in a real location on Earth during a specific period for which weather data is available. The wholesale market is a relatively simple call market, similar to many existing wholesale electric power markets, such as Nord Pool in Scandinavia or FERC markets in North America, but unlike the FERC markets we are modeling a single region, and therefore we do not model location-marginal pricing. Customer models include households and a variety of commercial and industrial entities, many of which have production capacity (such as solar panels or wind turbines) as well as electric vehicles. All have “real-time” metering to support allocation of their hourly supply and demand to their subscribed brokers, and all are approximate utility maximizers with respect to tariff selection, although the factors making up their utility functions may include aversion to change and complexity that can retard uptake of marginally better tariff offers. The distribution utility models the regulated natural monopoly that owns the regional distribution network, and is responsible for maintenance of its infrastructure and for real-time balancing of supply and demand. The balancing process is a market-based mechanism that uses economic incentives to encourage brokers to achieve balance within their portfolios of tariff subscribers and wholesale market positions, in the face of stochastic customer behaviors and weather-dependent renewable energy sources. The broker with the highest bank balance at the end of the simulation wins

    The 2015 Power Trading Agent Competition

    Get PDF
    This is the specification for the Power Trading Agent Competition for 2015 (Power TAC 2015). Power TAC is a competitive simulation that models a “liberalized” retail electrical energy market, where competing business entities or “brokers” offer energy services to customers through tariff contracts, and must then serve those customers by trading in a wholesale market. Brokers are challenged to maximize their profits by buying and selling energy in the wholesale and retail markets, subject to fixed costs and constraints. Costs include fees for publication and withdrawal of tariffs, and distribution fees for transporting energy to their contracted customers. Costs are also incurred whenever there is an imbalance between a broker’s total contracted energy supply and demand within a given time slot. The simulation environment models a wholesale market, a regulated dis

    How do Zimbabweans value health states?

    Get PDF
    Background Quality of life weights based on valuations of health states are often used in cost utility analysis and population health measures. This paper reports on an attempt to develop quality of life weights within the Zimbabwe context. Methods 2,384 residents in randomly selected small residential plots of land in a high-density suburb of Harare valued descriptors of 38 health states based on different combinations of the five domains of the EQ-5D (mobility, self-care, usual activities, pain or discomfort and anxiety or depression). The English version of the EQ-5D was used. The time trade-off method was used to determine the values, and 19,020 individual preferences for health states were analysed. A residual maximum likelihood linear mixed model was used to estimate a function for predicting the values of all possible combinations of levels on the five domains. The model was fit to a random subset of two-thirds of the observations, with the remaining observations reserved for analysis of predictive validity. The results were compared to a similar study undertaken in the United Kingdom. Results A credible model was developed to predict the values of states that were not valued directly. In the subset of observations reserved for validation, the mean absolute difference between predicted and observed values was 0.045. All domains of the EQ-5D were found to contribute significantly to the model, both at the moderate and severe levels. Severe pain was found to have the largest negative coefficient, followed by the inability to wash and dress oneself. Conclusion Despite a generally lower education level than their European counterparts, urban Zimbabweans appear to value health states in a consistent manner, and the determination of a global method of establishing quality of life weights may be feasible and valid. However, as the relative weightings of the different domains, although correlated, differed from the standard set of weights recommended by the EuroQol Group, the locally determined coefficients should be used within the Zimbabwean context

    Phylogenetic Relationships of the Marine Haplosclerida (Phylum Porifera) Employing Ribosomal (28S rRNA) and Mitochondrial (cox1, nad1) Gene Sequence Data

    Get PDF
    The systematics of the poriferan Order Haplosclerida (Class Demospongiae) has been under scrutiny for a number of years without resolution. Molecular data suggests that the order needs revision at all taxonomic levels. Here, we provide a comprehensive view of the phylogenetic relationships of the marine Haplosclerida using many species from across the order, and three gene regions. Gene trees generated using 28S rRNA, nad1 and cox1 gene data, under maximum likelihood and Bayesian approaches, are highly congruent and suggest the presence of four clades. Clade A is comprised primarily of species of Haliclona and Callyspongia, and clade B is comprised of H. simulans and H. vansoesti (Family Chalinidae), Amphimedon queenslandica (Family Niphatidae) and Tabulocalyx (Family Phloeodictyidae), Clade C is comprised primarily of members of the Families Petrosiidae and Niphatidae, while Clade D is comprised of Aka species. The polyphletic nature of the suborders, families and genera described in other studies is also found here
    • …
    corecore