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Abstract

This is the specification for the Power Trading Agent Competition for 2012 (Power TAC 2012).
Power TAC is a competitive simulation that models a “liberalized” retail electrical energy market,
where competing business entities or “brokers” offer energy services to customers through tariff
contracts, and must then serve those customers by trading in a wholesale market. Brokers are
challenged to maximize their profits by buying and selling energy in the wholesale and retail
markets, subject to fixed costs and constraints. Costs include fees for publication and withdrawal
of tariffs, and distribution fees for transporting energy to their contracted customers. Costs are
also incurred whenever there is an imbalance between a broker’s total contracted energy supply
and demand within a given time slot.

The simulation environment models a wholesale market, a regulated distribution utility,
and a population of energy customers, situated in a real location on Earth during a specific period
for which weather data is available. The wholesale market is a relatively simple call market, similar
to many existing wholesale electric power markets, such as Nord Pool in Scandinavia or FERC
markets in North America, but unlike the FERC markets we are modeling a single region, and
therefore we do not model location-marginal pricing. Customer models include households and a
variety of commercial and industrial entities, many of which have production capacity (such as
solar panels or wind turbines) as well as electric vehicles. All have “real-time” metering to support
allocation of their hourly supply and demand to their subscribed brokers, and all are approximate
utility maximizers with respect to tariff selection, although the factors making up their utility
functions may include aversion to change and complexity that can retard uptake of marginally
better tariff offers. The distribution utility models the regulated natural monopoly that owns
the regional distribution network, and is responsible for maintenance of its infrastructure and for
real-time balancing of supply and demand. The balancing process is a market-based mechanism
that uses economic incentives to encourage brokers to achieve balance within their portfolios of
tariff subscribers and wholesale market positions, in the face of stochastic customer behaviors and
weather-dependent renewable energy sources. The broker with the highest bank balance at the
end of the simulation wins.
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1 Background and motivation

We know how to build “smart grid” [1] components that can record energy usage in real time and
help consumers better manage their energy usage. However, this is only the technical foundation.
Variable energy prices that truly reflect energy scarcity can motivate consumers to shift their loads
to minimize cost, and for producers to better dispatch their capacities [11]. This will be critical to
the effort to develop a more sustainable energy infrastructure based on increasing proportions of
variable-output sources, such as wind and solar power. Unfortunately, serious market breakdowns
such as the California energy crisis in 2000 [3] have made policy makers justifiably wary of setting
up new retail-level energy markets.

The performance of markets depends on economically motivated behavior of the participants,
but proposed retail energy markets are too complex for straightforward game-theoretic analysis.
Agent-based simulation environments have been used to study the operation of wholesale energy
markets [14], but these studies are not able to explore the full range of unanticipated self-interested
or destructive behaviors of the participants. Smart grid pilot projects, on the other hand, are limited
in their ability to test system dynamics for extreme situations. They also lack the competitiveness of
open markets, because a single project consortium typically controls and optimizes the interaction of
all parts of the pilot regions. Therefore, we are presenting an open, competitive market simulation
platform that will address the need for policy guidance based on robust research results on the
structure and operation of retail energy markets. These results will help policy makers create
institutions that produce the intended incentives for energy producers and consumers. They will also
help develop and validate intelligent automation technologies that will allow effective management
of retail entities in these institutions.

Organized competitions along with many related computational tools are driving research into a
range of interesting and complex domains that are both socially and economically important [2]. The
Power Trading Agent Competition1 is an example of a Trading Agent Competition (TAC)2 applied
to energy markets. Earlier successful examples of TAC include the Trading Agent Competition for
Supply-Chain Management (TAC SCM) [6] and the Trading Agent Competition for Ad Auctions
(TAC AA) [10].

2 Competition overview

The major elements of the Power TAC scenario are shown in Figure 1. Competing teams will con-
struct trading agents to act as self-interested “brokers” that aggregate energy supply and demand
with the intent of earning a profit. In the real world, brokers could be energy retailers, commercial
or municipal utilities, or cooperatives. Brokers will buy and sell energy through contracts with retail
customers (households, small and medium enterprises, owners of electric vehicles), and by trading
in a wholesale market that models a real-world market such as the European or North American
wholesale energy markets. Brokers compete with each other trying to attract customers by offering
tariff contracts to a population of anonymous small customers (households, small businesses), and
by negotiating individual contracts with larger customers (such as major manufacturing facilities,
or greenhouse complexes with many Combined Heat and Power (CHP) units). Contract terms may
include fixed or varying prices for both consumption and production of energy, along with other

1For up-to-date information see the project website at http://www.powertac.org
2See http://www.tradingagents.org
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incentives such as rebates for energy conservation, or even sign-up bonuses or early-withdrawal
penalties. Separate contracts may be offered for charging electric vehicles, which could limit charg-
ing during high-demand periods, or even offer to pay the customer for feeding energy back into the
grid at certain times. Variable prices may follow a fixed schedule (day/night pricing, for example),
or they may be fully dynamic, possibly with a specified advance notice of price changes. Dynamic
pricing could motivate some customers to invest in “smart” appliances that can receive price signals
and adjust energy use to control costs.

Figure 1: Major elements of the Power TAC scenario.

The simulation is designed to model energy markets primarily from an economic rather than
from a technical viewpoint, and therefore we currently do not simulate the physical infrastructure
(see Appendix A). In the future, we anticipate integrating the market simulation with a physical
simulation in order to be able to evaluate the technical feasibility of the market’s energy allocation
over time.

Broker agents are challenged to operate profitably by planning and executing activities over mul-
tiple timescales in two markets, a tariff market and a wholesale market. Over a planning horizon
from weeks to months, brokers build portfolios of consumer, producer and electric vehicle customers
by offering tariff contracts and negotiating individual contracts3. At the operational level, over a
time horizon of 24 hours, brokers must balance the fluctuating energy demands of their contracted
power consumers against the actual output of their contracted energy producers. Projected differ-
ences between supply and demand must be accommodated by influencing the levels of supply and
demand among customers using price signals, and by purchasing or selling energy in the wholesale
energy market. Retail market dynamics thus influence the wholesale market and vice versa.

A broker’s primary goal in portfolio development (see Figure 2) is to develop a good-quality
set of tariff subscriptions and individual contracts with customers who will sell or purchase en-
ergy. The ideal portfolio is profitable and can be balanced, at least in expectation, over a range of
environmental conditions. A secondary goal is to manage financial and supply/demand imbalance
risks. For example, an agent will benefit from having reasonably-priced energy sources that can
be expected to produce power when demand is expected to be highest within its load portfolio.

3Individual contract negotiation will be implemented for the 2013 competition.
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Figure 2: Portfolio management process. Tariff offerings proceed in parallel with individual contract
negotiation.

Predictability is also important, and will generally improve both with volume and with a balanced
portfolio of uncorrelated generation capacities and loads. Risk can be managed by acquiring un-
correlated sources and loads that can be expected to balance each other in real time, by acquiring
storage capacity, by acquiring flexible consumption and generation capacities (balancing capacity),
by selling variable-price contracts, and by trading future energy supply contracts on the wholesale
market.

2.1 Simulation time

In the Power TAC simulation, time proceeds in discrete blocks or “time slots,” each one hour in
simulated time. Each time slot takes nominally 5 seconds of real time. A typical simulation runs
for roughly 60 simulated days, or 1440 time slots, over approximately 2 hours of real time. At any
given time, there is a “current” time slot, and a set of “enabled” future time slots for which the
wholesale market is open for trading. A primary goal of a broker is to achieve balance between
power supply and demand in each future time slot, primarily through interactions in the customer
market and through trading power delivery commitments for enabled time slots in the wholesale
market.

The simulation environment depends on clock synchronization between the simulation server
and the brokers. For this to work correctly, the server and brokers must be installed on machines
that synchronize their clocks using ntp, the Network Time Protocol. Synchronization of simulation
time is initialized by the SimStart message, sent to brokers at the start of a simulation. In rare
cases where the server cannot complete its processing on time, it pauses the clock by issuing a
SimPause message to signal that the clock is stopped, and a SimResume message with a revised
clock offset to restart the clock. In the tournament configuration, the clock is paused whenever less
than 2 seconds remains between the sending of the TimeslotComplete message (the last message
sent in each timeslot) and the start of the next timeslot.

2.2 Customer market

In the customer market, broker agents try to acquire energy generation capacity from local pro-
ducers, and load capacity from local energy consumers. Brokers can buy and sell energy through
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two different mechanisms, tariffs and individual contracts (although individual contracts will likely
not be implemented before the 2014 competition). For most customers, such as households, small
businesses, and small energy producers, brokers may offer tariffs that specify pricing and other
terms, and customers must choose among the tariffs on offer. For larger producers or consumers
that do not interact directly with the wholesale markets (for example, a large industrial facility, a
university campus, or a greenhouse complex with many CHP units), brokers may negotiate indi-
vidual contracts. Tariff offerings and contract negotiations may be conducted at any time, without
regard to the daily and hourly cycle of the simulation, as depicted in Figure 2. However, tariffs will
be published to retail customers in batches, nominally once every six simulated hours.

Power TAC supports rich tariff specifications modeled on current developments in real-world
electricity markets. Brokers can specify periodic payments, time-of-use tariffs with hourly or daily
intervals, tiered rates, sign-up bonuses and early withdrawal fees, as well as dynamic pricing where
the rate can be continuously adjusted by the broker. These tariff design elements allow brokers to
shape and control their portfolios.

Contract and tariff terms and conditions must be described in a language that has clear seman-
tics along with the necessary features to describe a variety of possible business agreements between
brokers and their customers. The development of a common semantic model and a common pricing
model to describe various kind of energy tariffs are considered top priorities on the EPRI / NIST
Smart Grid roadmap for the development of a smart grid [17].

Within the Power TAC domain, negotiations and the contracts (including tariffs) that are the
subject and result of negotiations are able to specify

Time: including points in time, time intervals, periodicity (days, weeks, months, etc.), and tem-
poral relationships (before, after, during, etc.). These terms can be used to specify contract
duration as well as other time-related contract terms.

Energy: including amounts of energy produced or consumed, and rate of production or consump-
tion (power). Contracts or tariffs may also specify amounts of energy that can be remotely
controlled or curtailed, for example by shutting off a domestic water heater for 15 minutes ev-
ery hour during peak demand periods. Such remotely-controllable sources or loads are called
“balancing capacity.”

Money: Agreements may specify payments to or from the customer based on time (one-time sign-
up fee or bonus, fixed monthly distribution fees), or time and energy (fixed or variable prices
for a kilowatt-hour).

Communication: contract award and termination, notification of price changes, etc.

A broker must use tariff offerings and contract negotiations to develop a portfolio of contracted
consumers and producers. To do this, brokers will need to estimate and reason about consumer
and producer preferences in order to design appropriate tariffs and to appropriately respond to
counteroffers from potential contract customers. Brokers will also need to estimate future consumer
and producer behavior to build a portfolio that has well-balanced demand and supply over time
and that provides sufficient balancing capacity to achieve an acceptably low risk of imbalance.

2.3 Wholesale market

The wholesale market allows brokers to buy and sell quantities of energy for future delivery, typically
between 1 and 24 hours in the future. For this reason, it is often called a “day-ahead market”. The
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Power TAC wholesale market is a periodic double auction, clearing once every simulated hour.
Participants include the brokers and a set of wholesale participants that provide bulk power and
liquidity to the market.

2.4 Distribution Utility

The Distribution Utility (or simply DU) represents the regulated electric utility entity that owns
and operates the distribution grid. It plays three roles in the Power TAC simulation:

1. It distributes power through the transmission grid to the customers. In this role it is a natural
monopoly, and in the real world may be a cooperative, a for-profit regulated corporation, or
a government entity. Brokers must pay distribution fees for the use of the distribution grid in
proportion to the quantities of energy their customers transport over the grid.

2. It is responsible for the real-time balance of supply and demand on the distribution grid. In
this role it operates a “balancing market” (see Section 6) that creates an incentive for brokers
to balance their own portfolios of energy supply and demand in each time slot.

3. It offers “default” tariffs for energy consumption and production. In this role it simulates
the electric utility in a non-competitive regulated tariff market that typically exists prior to
market liberalization. The default tariffs also form a “ceiling” that constrains the potential
profitability of brokers, because customers are always free to choose the default tariffs over
competing broker offerings. The default broker role is an essential element of the simulation,
because customers must always have access to power, and therefore at the beginning of a
simulation, all customers are subscribed to the default tariffs. Brokers must lure them away
using more attractive terms.

2.5 Accounting

Cash accounting aggregates customer transactions for tariff subscription and withdrawal, and power
consumption and production. Other transactions include tariff publication fees, wholesale market
settlements, balancing market settlements, interest on debt, and credits and debits related to taxes
and incentives. Market position accounting tracks the current commitments in the wholesale market
for each broker in each future time slot. This information is needed by the Distribution Utility to
run the balancing process in the current time slot.

Each agent has an account in the central bank, and starts the game with a balance of zero in
the account. Credits and debits from the various transactions are added to the account during each
time slot. Agents are allowed to carry a negative balance during the course of the game.

When the agent’s balance is negative, the agent is charged interest on a daily basis. The balance
is updated daily (once every 24 hours) as

bd+1 = (1 + β/365)bd + creditsd − debitsd (1)

Where bd is the balance for day d, β is the annual loan interest rate. A typical annual loan interest
rate is β = 10%.

When the agent’s balance is positive, the agent is paid a daily interest. This is done by updating
the daily balance as

bd+1 = (1 + β′/365)bd + creditsd − debitsd (2)
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Typical annual savings interest is β′ = 5%.

Values for β and β′ are provided to the agent at the beginning of the game (see Table 2 on
page 28 for standard tournament values).

2.6 Weather reports

Weather forecasts and current-hour weather conditions are sent to brokers in each time slot. Some
customer models will use this information to influence energy consumption (temperature, for ex-
ample), and production (wind speed, cloud cover). Brokers who have subscribed customers that are
weather-sensitive will also need this data to predict production and consumption. In most cases,
this component will be a proxy for an external data source containing real-world weather and fore-
cast history data for some real-world location. The location and date range for the weather dataset
is privileged information, not revealed to brokers.

3 Brokers

3.1 Actions available to brokers

Figure 3 provides an overview of the timeline and information exchange between a broker and the
simulation environment in each time slot. Note that the specific order of events is more flexible
than what is shown. Specifically, the sequence of major processes in the simlation environment is
fixed (additional detail is given in Figure 6), but brokers can send messages at any time, as long as
they arrive before the server needs them.

In each time slot, a broker may initiate any of the following actions.

Create new tariffs (Tariff Market): Design and offer new tariffs to customers.

Modify tariffs (Tariff Market): Change tariff terms for existing customers by replacing a su-
perseded tariff with a new one.

Price adjustments (Customers): Adjust prices for an existing tariff, if tariff terms allow it.

Contract negotiation (large Customers): Participate in bilateral negotiation to define indi-
vidual contracts (not implemented in the current version).

Balancing offer (Distribution Utility): Offer controllable capacities for real-time balancing,
to the extent allowed by tariff terms.

Create asks and bids (Wholesale Market): Create asks and bids to sell or procure energy for
future time slots.

We now describe each of these activities in more detail.

3.1.1 Design, offer and modify tariffs

To manage their portfolios, brokers design and offer tariffs. They may also modify an existing tariff
by superseding it with a new one, then revoking the original tariff. The detailed structure of a
tariff offering is shown in Figure 4. This structure supports a number of features within a simple,
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Figure 3: Overview of Power TAC activities within one time slot. A broker interacts with the
wholesale and tariff markets, and receives information from the weather service, customers, the
balancing market, and the accounting service.

compact object graph. Many concepts are represented in the TariffSpecification itself (payments,
energy-type), but the rate structure is broken out. This allows for a range of rate structures without
requiring space (memory and bandwidth) for unused features. It also allows a simple convention of
empty references for unused features. Here are some common tariff features that can be represented
with this structure:

• tiered rates, in which customers pay/receive one rate for a portion of usage (up to 20 kWh/day,
for example), and a different rate for the remainder;

• time-of-use rates;

• weekday/weekend rates;

7



Figure 4: Tariff structure.

• two-part tariffs (fixed daily fee plus usage fee);

• signup payments in either direction (fee or bonus);

• early withdrawal penalties;

• variable rates with minimum and maximum values, estimated mean values, and notice inter-
vals.

• interruptible rates in which some portion of the load may be curtailed during a timeslot in
order to reduce overall power costs or to reduce the cost of balancing.

It is not currently possible to write tariffs that bundle multiple power-types, such as household
consumption and electric-vehicle charging. Such bundling is certainly practiced in the real world,
but for the time being, the complexity of evaluating bundled tariffs is avoided. On the other hand,
bundling of tariff instances within the scope of a negotiated agreement seems reasonable and easily
represented with minor modifications.

Figure 5 shows the evolution of a single tariff from the time it is published. Brokers can submit
tariffs to the market at any time (pending). Periodically new tariffs are published by the market to
customers and to all brokers, at which point they are offered. Once a customer subscribes, the broker
is notified of the new subscription, and the tariff becomes active. Brokers are notified of various
events on active tariffs, including customer subscribe and unsubscribe actions, and customer meter
readings. Tariffs can have an expiration date, after which they are expired and new subscriptions
are not allowed. If a broker wishes to modify an existing tariff, the process is to first offer a new
tariff that supersedes the existing tariff, and then force customers to unsubscribe from the existing
tariff by revoking it. As long as some other tariff has already been submitted that supersedes the
revoked tariff, then all subscriptions are automatically transferred to the superseding tariff, but
with a minimum contract duration of 0. If there is no superseding tariff, then customers are forced
back to the default tariff.
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Figure 5: Tariff state transitions.

3.1.2 Dynamic pricing decisions

An important tool in a broker’s ability to balance consumption and production from its portfolio
of customers and wholesale market commitments is the ability to change prices for customers
dynamically using variable-rate tariffs. Since such dynamic prices are typically communicated to
the customers some number of time slots before the time slot to which they apply, the broker must
use some type of forecasting to determine the optimal price to set for the target time slot, i.e., the
future time slot for which it is now required to communicate prices.

There are several environmental features that factor into the prices that the broker may want to
charge. At a basic level, a broker typically already knows something about the price of power to be
delivered in the future from its interactions with the wholesale market. It may also want to forecast
demand and supply of customers for the target time slot. Two major factors in the determination
of this demand and supply are (i) the estimated or realized load and supply for time slots preceding
the target time slot, and (ii) the weather forecast conditions for the target time slot.

At a more advanced level, a broker can also try to forecast the prices in the wholesale market as
well as the DU’s balancing market and use those forecasts in setting its tariff prices for the target
time slot. For example, if the broker believes that it will likely be cheaper to buy energy in the
wholesale market than to increase production from its portfolio, it may choose to not increase its
dynamic tariff prices for producers, which would normally incentivize them to increase production,
even when it needs to respond to a potential short-supply condition in the target time slot.

3.1.3 Capacity controls

Brokers may be motivated to offer tariffs for controllable (also known as interruptible or curtailable)
capacity for two reasons:

• to reduce wholesale power costs, a broker may directly exercise economic controls for a specific
timeslot, up to the limit of the maxCurtailmentRatio specified in the rate that is in effect
for a given tariff. An economic control is communicated by an EconomicControlEvent that
specifies a curtailment ratio r and a timeslot n, and must be received by the simulation server
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before the customer models run in timeslot n. Since the customer models run close to the start
of a timeslot, the broker should communicate economic controls before the end of timeslot
n− 1. These controls are for specific timeslots, so a broker must re-issue them to extend such
controls across multiple timeslots.

• to reduce balancing charges, a broker may authorize the DU to exercise controls against its
tariffs during the balancing phase, just in case doing so would be beneficial to the broker.
Such controls are called balancing controls. Brokers may issue BalancingOrder messages to
the DU in order to authorize these controls, specifying the tariff, an allowable curtailment
ratio, and a price/kWh. The price is typically positive for consumption curtailment (the DU
pays the broker), and negative for production curtailment. Balancing orders remain in effect
until canceled by issuing a new order specifying a different curtailment ratio.

Economic controls and balancing orders may be used concurrently for the same tariff in the same
timeslot, but the economic control takes precedence, and so the actual curtailment available to the
balancing order is the difference between the allowable curtailment and the curtailment specified
in the economic control.

In order to make such tariffs attractive to customers, brokers must factor in the future cost of
customer inconvenience resulting from service interruptions. They must also deal with the load-
shifting behavior of customers, because curtailment generally results in the curtailed load showing
up in future timeslots.

3.1.4 Wholesale market trading

Dynamic adjustment of prices for consumers and producers who are on variable-price tariffs and the
advance reservation of interruptible capacity as balancing power are two possibilities to balance a
broker’s portfolio over time. The third is to buy missing, or to sell excess, capacity on the wholesale
market. Details of the wholesale market clearing process are given in Section 5. In Figure 6 we see
in more detail the timing of interactions between the broker and the wholesale market, along with
the information needed by brokers to make trading decisions.

Figure 6: Simulation process phases and associated market information.

The wholesale market is cleared at the beginning a time slot n. The process starts with an
announcement of the time slots open for trading in the following time slot, typically time slots

10



[n+1 . . . n+24]. Next, all outstanding orders that have been submitted since the beginning of the
previous time slot n−1 are cleared, and the results announced in the form of cleared trades (amounts
and prices) and orderbooks (uncleared bids and asks) for each cleared time slot. From the broker’s
perspective, the information it needs to make trading decisions for future time slots starts at the
beginning of a time slot. This information includes weather reports, customer usage and production
reports, balancing transactions, tariff subscription changes, transactions, and updates to its current
market and cash positions. Assuming reasonable network performance, all this information will
arrive in time to make final trading decisions for the following market clearing.

3.1.5 Portfolio management

The primary goal of a broker is to publish tariffs and negotiate contracts for power sources and
loads that result in a portfolio that is profitable and balanced, at least in expectation, over some
period of upcoming execution activities and time slots. For example, an agent will benefit from
having reasonably-priced energy sources that can be expected to produce power when demand is
expected to be highest within its load portfolio. Predictability is also important, and will generally
improve both with volume (because noise as a proportion of demand or supply will be lower with
larger numbers of randomly-behaving sources and load, even if they are correlated) and with a
balanced portfolio of uncorrelated power sources and customers.

A secondary goal is to manage financial and supply/demand imbalance risk. Such risk can be
managed by acquiring producers and consumers that can be expected to balance each other in
real time, by acquiring storage capacity, by acquiring interruptible or controllable consumption
and production capacity that can be used as needed (balancing capacity), and by trading futures
contracts on the wholesale market.

Power sources include cleared bids in the wholesale market, small local producers (household
and small-business sources) acquired by offering tariffs, and large local producers (e.g., small wind
farms or CHP plants) acquired through individually negotiated contracts.

Power sources can be more or less predictable, and may have a non-zero controllable component
as discussed in Section 2. Predictable sources include power obtained from the wholesale market as
well as the continuous portion of the output from many CHP and hydro plants. Less predictable
sources include most renewable sources such as wind and solar plants, which fluctuate with weather
conditions and/or time of day.

Loads include cleared asks in the wholesale market, small local loads (e.g., households and small
businesses) acquired by offering tariffs, and large local loads (e.g., industrial facilities and large
office parks) acquired through individual contracts.

Storage capacity can be used to absorb excess power or to source power during times of shortage.
Power can be absorbed by capacity that is not fully charged, and sourced by capacity that is above
its contracted minimum charge level. Storage capacity that is below its minimum charge level is
considered to be a load that is possibly responsive to real-time price signals.

Storage capacity can be contracted through the tariff market or the contracting process. For
example, individual owners of plug-in electric vehicles (PEVs) could subscribe to tariffs that provide
for both charging of the batteries as well as limited discharging as needed for load balancing by
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the contracted broker. On the other hand, a battery-exchange service for electric vehicles might
negotiate a contract for the use of a portion of its current battery inventory for balancing purposes.

Note that storage capacity is not implemented for the 2012 competition.

3.2 Information available to brokers

Here we summarize the information available to brokers at various times during the game. All
of this information arrives in the form of asynchronous messages at appropriate times during a
simulation. Data structure details are available in the code documentation available on the project
website.

At the beginning of a simulation, after brokers have logged in but before the clock begins to
run, the following public information is sent to each broker:

Game parameters: The parameters used to configure or instantiate the specific game. See Sec-
tion 7.1 for details.

Broker identities: The identities (usernames) of the participating brokers in the current game.
A particular competition participant maintains the same identity over the different rounds of
a competition.

Default tariffs: At game initialization, the tariff market offers only the tariffs published by the
Default Broker. All customers start out subscribed to the appropriate default tariff. There
will be one for each different “power-type” available in the configured set of customer models.

Bootstrap Customer data: Consumption and production data for each customer model for the
14 days preceding the start of the simulation, under the terms of the default tariffs.

Bootstrap Market data: Delivered prices and quantities for power purchased by the default
broker in the wholesale market over the 14 days preceding the start of the simulation. Quan-
tities may differ from customer consumption if the default broker’s balance is not accurately
balancing supply and demand.

Bootstrap Weather data: Weather reports for the 14 days immediately before the start of the
simulation.

Weather report, Weather forecast : The current weather and the forecast for the next 24
hours.

The following information is sent to brokers once per Tariff Period, which is typically once
every 6 simulation hours.

Tariff updates: New tariffs, revoked tariffs and superseding tariffs submitted by all brokers. This
is public information, sent to all brokers.

Portfolio changes: New and dropped customer subscriptions, consisting of the customer model
ID, the tariff ID, and the number of individual customers within the customer model. This is
private information, sent to the tariff owner.

Tariff transactions: Tariff publication fees, signup bonus and early-exit penalty transactions cor-
responding to the subscription changes. This is private information for the tariff owner.
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The following public information is sent to all brokers once per Timeslot, which is typically
once every 1 simulation hour.

Wholesale market clearing data: Market clearing prices and total quantities traded for each
of the 24 trading slots in the wholesale market. This may be missing if no trades were made
in a given time slot.

Wholesale market orderbooks: Post-clearing orderbooks from the most recent clearing for each
open time slot, containing prices and quantities of all unsatisfied bids and asks.

Weather report and weather forecast Weather conditions for the current time slot, and fore-
cast for the next 24 hours.

The following private information is sent to individual brokers once per time slot.

Tariff transactions: Customer meter readings and associated credits/debits.

Balancing and distribution transactions: Charges (or credits) from DU for each individual
broker to clear the balancing market and to distribute power.

Portfolio supply and demand: Production and consumption transactions for the broker’s cur-
rent customer portfolio, broken down by customer subscription (customer-tariff pairs).

Wholesale market transactions: Cleared or partially-cleared bids and asks submitted by the
broker.

Market positions: Broker’s updated net import/export commitments, for each of the 24 open
trading time slots on the wholesale market.

Cash position: Broker’s updated cash position (bank balance) after all current accounting trans-
actions have been applied.

4 Customer market

Consumers and producers in the customer market are simulated using a range of customer mod-
els. These customers interact with brokers primarily through the tariff market mechanism – by
subscribing to tariffs offered by brokers. In future, larger customers will also be able to negotiate
individual contracts. Each customer is fundamentally characterized by a core set of information
captured in a corresponding CustomerInfo object, which includes:

• Name: The mnemonic handle for a customer, separate from the internally generated unique
ID for each customer.

• Population: An integer count of the number of indivisible entities represented by this ”ag-
gregate” customer. This typically corresponds to the number of metering endpoints deployed
by the DU to service this customer. For example, if a customer model represents a single
household, it would likely have a population of 1 even though multiple persons occupy the
household. If a model represents an office building, it may have each tenant or each floor of
the building as a separate population entity.
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• PowerType: This is an important characterization that primarily indicates where a customer
consumes or produces power. It also indicates whether that consumption or production is
interruptible; i.e., the consumption or production capacity can be taken offline directly by the
DU in response to economic controls exercised by brokers or due to balancing controls that
the DU is authorized to exercise. This field is realized in code as a sophisticated enumeration-
like object that can be interrogated for the above information and it also captures subtype
information such as whether a production customer is a solar producer or a wind producer.

• MultiContracting: Customers with non-singular populations may have the ability to al-
locate a partition of the population over multiple tariffs, which may be offered by multiple
brokers. Note however that all entities of the population must be allocated to some tariff at
any given point in the simulation.

• CanNegotiate: This field is a placeholder for future enhancement; it indicates whether a
customer is allowed to negotiate individual contracts.

Thus, the currently available customer models vary along the three key dimensions of population
size, power type and ability to multi-contract. In implementation, the customer models are broadly
one of two classes:

1. Elemental Models: This class of models attempts to simulate customer behavior at a fine
level of granularity. For example, such customers are modeled using the number of persons
per household, their work/vacation schedule, the usage patterns of the individual appliances
that they use, and so on [9]. Two such models are currently available representing households
and office buildings (respectively in the household-customer and officecomplex-customer

software modules).

2. Factored Models: The fine granularity of the behavioral simulations employed by the elemental
models constrains the size of populations that can be simulated by such models. As an alter-
nate approach, factored models simulate the aggregate behavior or larger population models
and other complex entities using a generalized set of factors that influence their behavior.
Such factors control both the tariff selection process and the consumed/produced capacities
exhibited by such customers. Thoughtfully configured combinations of all of these factors can
be used to instantiate specific customer types such as relatively homogeneous collections of
households, offices, campuses, hospitals, factories, wind farms, solar farms, etc. Information
about the specific instantiations of factored models currently available can be found in the
online documentation and in the factored-customer module4.

In a research environment, one can choose which of these customer models are deployed in the
simulation and how they are configured, but in the competition setting this information is opaque
to the brokers, i.e., the competition participants. The rest of this section describes the general
behavior of both classes of customer models. Implementation variances result in slight differences,
which will be highlighted as necessary.

The observable behavior of the customer models can be categorized into three areas: (i) choosing
tariffs, (ii) providing interruptible capacities for balancing by the DU, and (iii) generating meter
readings. We will describe each of these aspects in the following sections.

4https://github.com/powertac/powertac-server/wiki/Factored-Customers
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4.1 Choosing tariffs

Customer models actively participate in the tariff market by choosing new tariffs through periodic
evaluation of the tariffs offered by the brokers. The key part of customer tariff evaluation is cal-
culation of the expected cost or gain over the lifetime of a contract relationship. This quantity is
composed of (i) the expected variable payments from estimated consumption or production, (ii)
fixed periodic payments, and (iii) sign-up fees or bonuses. Since early exit from contracts is allowed
(possibly with a penalty), customer models may evaluate available tariffs at any time. In this case,
a proper switching evaluation has to consider the early exit fees from leaving the current tariff.

This monetary evaluation is complemented by an additional assessment of other tariff aspects,
e.g. broker reputation, energy sources, interruptibility properties, and realized price of variable-
rate tariffs. Therefore, tariffs are compared using a utility value computed from the monetary
implications and these other aspects. From the currently available tariff list customers need to
select a suitable one (see Figure 7). This is a two-step problem:

1. Derive the utility value for the current tariff and the new tariffs to be considered — this could
be either all tariffs or just a (random) subset.

2. Compare all evaluated tariffs and choose (most) suitable one

Figure 7: Tariff selection problem.

Note that customers also exhibit inertia which prevents them from immediately switching to
the tariff(s) with the best utility. The implementation of the tariff selection problem is described
in the remainder of this section.

4.1.1 Deriving tariff utility

The utility of a given tariff, Ti, is computed as a function of variable payments pv, periodic pay-
ments pp, lifecycle payments pl (sign-up fees and bonuses), realized variable payments pr, and the
interruptibility characteristics of the tariff xi:

ui = f(pv, pp, pl, pr, xi)
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The specifics of the function f vary across customer model implementations, but some gen-
eral characteristics of this utility evaluation mechanism are described here. Broker reputation is
currently measured in terms of how the realized price on tariffs compares to the expected costs com-
municated by the tariff (the distinction is mostly relevant for tariffs with variable rates). Whenever
realized price information is available (once the tariff has been active for some period), the expected
variable payments for a tariff are computed as a linear combination of the communicated variable
payments pv and the historical realized payments pr: i.e., αvpv + (1− αv)pr.

The computation of the various payment components is normalized to nominal daily values.
Thus, variable payments are computed using 24-hour forecast samples of consumption or production
capacities for each customer. Thus, it is possible for different tariffs to obtain different utility value
rankings purely from the variance in these forecast samples. Periodic payments are denoted as daily
payments already. Sign-up fees and bonuses are normalized to daily values using expected length
of typical contract periods. Finally, a customer-specific discount may be applied for a tariff that
has the option to exercise interruptibility (for customers with interruptible power types).

4.1.2 Choosing based on tariff utility

The set of tariffs considered for evaluation at any given time may be constrained. For example, tariffs
with expected costs that deviate “too far” from the default tariff may be disregarded. Similarly,
a “flood of tariffs” from a single broker may be filtered down such that only the best of them
is considered. At various points customers may evaluate new tariffs only in comparison to their
currently subscribed tariffs whereas at other times they may consider all unexpired tariffs.

Customers may also decide to postpone evaluation of newly published tariffs at some times. So,
each customer model is configured with an inertia threshold, ι ∈ R[0, 1]. At each tariff evaluation
timeslot, τ , if a random draw from the uniform distribution, xτ ∼ Unif (0, 1) is at or below the
inertia threshold, i.e., xτ ≤ ι, then the newly published tariffs are queued for deferred processing at
a subsequent tariff evaluation timeslot. On the other hand, if the random draw exceeds the inertia
threshold, i.e., xτ > ι, then any newly published tariffs and any previously deferred tariffs are
evaluated immediately.

An overall tariff choice does not necessarily follow a deterministic choice of the highest utility
value. This is especially important for population models that represent a larger group of customers.
A smoother decision rule, based on the multinomial logit choice selection model, which allocates
the selection choice proportionally over multiple similar tariffs, is therefore employed to allocate
customers to tariffs. The logit choice model assigns probabilities to each tariff, ti, from the set of
evaluated tariffs, T, as follows:

Pi =
eλui

∑

t∈T e
λut

The parameter λ is a measure for how rationally a customer chooses tariffs: λ = 0 represents
random, irrational choice, while λ = ∞ represents perfectly rational customers always choosing
the tariff with the highest utility5. Depending on the customer model type this choice probability
can be used in two ways — either to represent somewhat randomized, not perfectly rational tariff
choice in case of single customer models or to assign population shares to different tariffs in case
of a population customer model.

5In implementation, λ is less than ∞ to avoid numeric overflow issues.
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4.2 Providing interruptible capacity

Customers can provide brokers with different forms of balancing capacities, determined by the
PowerType. These differ in availability and the amount of balancing energy available.

• Interruptible consumption: Certain types of appliances (water heaters, heat pumps) can
support remote interruption by the DU. If a broker has such interruption under contract, its
use can be offered to the DU to avoid balancing charges.

• Pledged energy from storage: By pledging stored energy customers with energy storage
can provide balancing capacity, limited by the storage unit’s discharge power and level of
charge.

• Controllable micro generation: While intermittent producers typically cannot provide
balancing capabilities, non-intermittent producers like CHPs or bio-gas units can pledge extra
generation capacity for balancing purposes.

When capacity is curtailed by the DU due to an economic control exercised by the broker or
due to a balancing control exercised by the DU, the customer may forfeit that capacity or shift
some or all of it to future time slots. The degree and nature of shiftability is a customer-specific
attribute that is deeply tied to the physical nature of that customer’s capacity.

4.3 Generating meter readings

The meter readings generated by customers may depend on different factors. Intuitively we can
group these into three basic groups – static, broker-dependent and game-dependent factors. Static
factors are model primitives (such as the number of household members, work shift hours, equip-
ment) that characterize the customer’s fundamental load profile independent of developments in the
game. Broker-dependent factors influencing the realization of customer load profiles are the tariff
(time-of-use pricing induces customers to shift consumption) as well as balancing capacity actions
(respond to current or previous curtailment). Lastly, game-dependent factors include all load ad-
justment triggered at runtime by the game environment, e.g. randomization, simulated time-of-day,
current weather conditions (e.g. turning on A/C, output from solar panels).

Currently implemented customer models consider the type of customer entity (e.g., household
vs. factory) and the size of population to generate a base load. That base load is then adjusted
for broker-dependent and other dynamic factors. The dynamic factors currently used include day-
of-week, time-of-day, current weather (including temperature, cloud cover, wind speed, and wind
direction), and a 48-hour weather forecast. The capacity is further adjusted to reflect attributes
of the tariffs to which the customer is currently subscribed. Under adverse prices, consumption
and production are both lowered to some degree (the degree depends on the specific customer).
Customers with smart shifting capabilities also adapt by moving capacity to future time slots; such
effects may benefit the customers when they are faced with tiered pricing (and therefore don’t want
to currently consume beyond a particularly tier), TOU pricing (the customer knows that they can
expect better rates in future time slots), or variable-rate pricing (the customer estimates that they
may get better rates and is therefore willing to absorb the risk and potential disutility of postponing
consumption or production).
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5 Wholesale market

The wholesale market in Power TAC operates as a periodic double auction (PDA) and represents
a traditional energy exchange like NordPool, FERC, or EEX6. The brokers can buy and sell power
contracts for future time slots to optimize their portfolio. In the wholesale market brokers interact
with each other directly as well as with generation companies (GenCos) and other wholesale market
participants as described below in Section 5.3.

5.1 Trading and time slots available for trade

Brokers can submit orders to the wholesale market for delivery between one and 24 hours in
the future. The time slots available for trading are marked as “enabled”; changes in time slot
status are communicated to brokers at the beginning of each time slot. Orders submitted for non-
enabled (disabled or not yet enabled) time slots are silently discarded. Depending on the market
configuration brokers may also be able to delete submitted orders from order books. The market
collects submitted orders continuously; the orders considered for clearing are exactly the set that
have arrived since the start of the last clearing.

Each order is a 4-tuple (b, s, e, p) that specifies a broker b, a time slot s, an amount of energy e
in megawatt-hours, and optionally a limit price per megawatt-hour p. Energy and price quantities
are treated as proposed debits (negative values) and credits (positive values) to the broker’s energy
and cash accounts. So an order (b1, s12, 4.2,−21.0) represents a bid (a buy order) from broker b1
to acquire 4.2 MWh of energy in time slot s12 for at most 21 e/MWh. Orders that specify a limit
price p are called “limit orders”, while orders that do not specify a limit price are called “market
orders.”

5.2 Market clearing

When the simulation clock is advanced to a new time slot, the wholesale market clears the orderbook
for each of the enabled time slots. Note that at the beginning of the clearing process an updated
list of enabled time slots is sent to each broker, but the set that is considered in clearing is the
set that was enabled immediately before the clearing process started. This is done to minimize the
period of time in which the set of enabled time slots from the broker’s viewpoint differs from the
set of enabled time slots from the market’s viewpoint.

In the clearing process, as shown in Figure 8, demand and supply curves are constructed from
bids and asks to determine the clearing price of each orderbook (one for each enabled time slot)
at the intersection of the two, which is the price that maximizes turnover. Note that bids propose
a positive energy amount and a negative cash amount, and asks have negative energy and positive
cash. Also note that market orders are sorted first, as though they had the highest bid prices or
the lowest ask prices.

If there is not a unique price where the supply and demand curves cross, as in this example,
then the clearing price is set at the mean of the lowest bid and the highest ask price supporting this
maximum turnover. All bids with prices higher than the last cleared bid, and all asks with prices
below the last cleared ask, are fully executed. In most cases, either the last cleared bid or the last
cleared ask is partially executed. If the last matched bid is a market order, then the clearing price
is determined by the highest ask price, with an added margin (nominally 20%). Similarly, if the

6See http://www.nordpoolspot.com, http://www.ferc.gov, or http://www.eex.com/en.
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last matched ask is a market order, the clearing price is determined by the lowest bid price, less a
margin. If all bids and asks are market orders, the clearing price is set to a (rather high) default
value; this case is highly unlikely in practice, since the wholesale players never use market orders.

In the example of Figure 8 we see bids sorted by decreasing (negative) price, and asks sorted
by increasing price. Both bid 1 and ask 1 do not specify a price; these are unconstrained “market
orders” and are always considered first. Bids 1-8 are all matched by lower-priced asks, and asks 1-6
are all matched by higher-priced bids, although only the first 2 MWh of ask 6 is matched. Ask 7
and bids 9-10 cannot be matched. The cleared volume is 27 MWh, and the clearing price is 16, i.e.
the mean of the prices in ask 6 and bid 8.

Figure 8: Market clearing example: bid 8 and part of ask 6 are the last to clear.

After the market is cleared the following steps are performed:

• Clearing price and volume are publicly broadcast (public information). In the example of
Figure 8, this would be (27, 16).

• Post-clearing orderbooks are published for each cleared time slot, giving the un-cleared bids
and asks, without broker information. In the example, the orderbook would include two asks
((−3, 15), (−7, 16)), and two bids ((5,−14), (7,−12)).

• Brokers are informed about their own executed transactions (private information).

• Updated cash and market positions are computed and communicated to brokers (private
information).
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• All orders are discarded.

5.3 Wholesale suppliers and buyers

To ensure liquidity to the wholesale market, the simulation includes both wholesale energy providers
as well as wholesale buyers. The wholesale suppliers are called Generation Companies, or Gencos
for short. Each Genco g has a nominal capacity Ĉg, a fixed cost/MWh cg, a commitment leadtime
τg, and a reliability value rg. Actual capacity Cg,s in time slot s varies around the nominal value
by either a mean-reverting random walk, or by current weather conditions in the case of wind
turbines. Given a variability parameter v, a mean-reversion rate m, and a uniformly distributed
random value ν on [0..1], the random walk is defined as

Cg,s = Cg,s−1 + v(2ν − 1)Ĉg + vm(Ĉg − Cg,s−1) (3)

At any given time, each Genco is “in operation” with a probability rg. If a Genco is in operation,
it will submit an ask to the market for its uncommitted capacity at its fixed cost in each future
time slot that is farther in the future than its commitment leadtime τg. Once it has sold at least
some power for a given time slot, it is committed, and will attempt to sell the remainder by
continuing to submit asks in each enabled time slot, including those closer to the current time
than its commitment leadtime. If it fails to sell at least some power in a given time slot by its
commitment time, then it will withdraw its capacity from the market for that time slot.

Once a Genco has sold power for a given time slot, it will deliver the power, regardless of its
capacity or operational status. We assume it has the ability to purchase power from others, if
necessary, to meet its commitments.

The exact set of Genco entities in the simulation and their parameters are not specified, but
will be revealed to brokers at the beginning of a simulation. The available set of Gencos will be
sufficient to cover the demand in the simulation. This can be assured by providing one high-priced,
high-capacity Genco with a minimal leadtime.

In addition to the Gencos, there is a wholesale buyer bb with stochastic behavior that simulates a
population of buyers and speculators. Its behavior is very simple: Given two parameters, a quantity
qb and a mean price pb, and a random value ν ∈ [0, 1], it computes a price pb,s = −pb ln(1−ν) for each
time slot s and places a bid (bb, s, qb/pb,s, pb,s) in each open time slot. This exponential distribution
produces large numbers of low-priced high-quantity bids, and a few higher-priced low-quantity bids.

6 Balancing mechanisms

In electricity markets, supply and demand have to be balanced almost perfectly in real time. A
major task of the Independent Systems Operator (ISO)7 on the wholesale (transmission) level and
of the Distribution Utility (DU) on the regional (distribution) level is to monitor the grid and to
maintain balance while keeping voltage, frequency, and power factor within very tight bounds. This
task becomes more challenging as more small-scale “non-dispatchable” renewable energy sources,
such as solar and wind, are connected to the grid [15]. Many of these sources (e.g. wind) are only
partially predictable.

The grid balancing problem has been studied on various levels (wholesale vs. retail) and with
different approaches [12]. In Power TAC, brokers accumulate credits and debits to their energy

7In Europe the name Transmission Systems Operator (TSO) is used instead of ISO.
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budgets for each time slot by selling (exporting) power or buying (importing) power in the wholesale
market, and by the power consumption and production activities of their contracted customers.
The total net energy budget for a time slot s and a broker b is denoted by xb,s. To carry out
its responsibility to balance supply and demand in each time slot, the DU may exercise capacity
controls (see below) on behalf of brokers, and it may import or export power through an “ancillary
services” or “regulating” market at prices that are normally much less attractive than the prices
faced by brokers in the wholesale market (see Figure 9).

Figure 9: Entities and activities during balancing.

Brokers acquire balancing capacity by offering price concessions in exchange for the ability
to remotely curtail loads (or sources) for limited periods of time. These loads are connected to
controllers installed at a customer site that allow the DU to interrupt or modulate power flow for
certain time periods, dependent on the type of contract the broker has with its customer. Most
examples of balancing capacity are associated with thermal or battery storage devices, such as
CHPs (Combined Heat and Power) systems that produce power when heat is needed, and domestic
water heaters that can be interrupted for periods of time without significantly impacting customer
convenience. In Power TAC regulating is currently (2012) limited to curtailment of loads.

We present three different scenarios and the related mechanisms to balance the market and
when they will be used:

Scenario I: no controllable capacities This was implemented for the 2011 pilot release.

Scenario II: static with controllable capacities This is implemented for the 2012 competi-
tion.

Scenario III: dynamic with controllable capacities This may be implemented as an option
in the 2013 competition.

More detailed background and examples on the balancing market can be found in [7]. In
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Figure 10: The price paid for an energy surplus is always lower than the lowest price observed in the
day-ahead market, while the price charged for an energy deficit is always higher than the highest
price observed in the day-ahead market.

the following two sections we discuss the mechanisms that are used for the first two scenarios
(with/without controllable capacities).

6.1 Scenario I: no controllable capacities

Scenario I was used in the pilot competition in the summer of 2011, using data from the econometric
analysis of [13] for parameter settings, scaled by the size of the customer population. This scenario
is similar to a number of current real-world implementations.

In this scenario, the charge for an individual broker b is set equal to the costs (or profits) the
DU incurs for balancing its individual imbalance quantity xb,s. These xb,s values are the individual
imbalance quantities, positive if the broker’s market position is greater than the actual usage of
its subscribed customers, and negative otherwise. In general the costs for the DU for balancing an
amount x are given by c0(x). This represents procurement or sale of power in the regulating market.
In Power TAC we let c0(x) = −x · P+(s) when x < 0 (for up-regulation) and c0(x) = −x · P−(s)
when x ≥ 0 (for down-regulation), where P+(s) is the highest price at which energy has been
traded for time slot s, and P−(s) is the lowest. The charge of c0(xb,s) for broker b on time slot s
ensures that it is never better to let your imbalance be resolved by the DU, and thus provide an
incentive to focus on trading in the day ahead market.

6.2 Scenario II: static with controllable capacities

With controllable capacity, brokers can submit balancing orders that allow the DU to exercise
capacity control in order to achieve balance. Each balancing order specifies a tariff, a ratio, and a
price, and allows the DU to curtail subscribers to the tariff up to the specified ratio of their actual
usage, for the stated price/kWh. Note, however, that there are several constraints on the amount of
power available for curtailment: the rate currently in effect specifies a maximum curtailment ratio,
and an economic control may have already been exercised against a particular tariff. Therefore,
the available curtailment is the product of the unexercised ratio and the actual power usage of the
customers against this tariff.

Brokers must submit their balancing orders before the customer models run, and the DU runs
its balancing process after customer consumption is known for the current time slot. At this point,
the DU can determine the actual quantities available for curtailment for each balancing order.
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The DU acts to resolve the net imbalance over all brokers at minimal cost. To achieve this,
given a set of balancing orders, the DU

1. discards the orders that cannot contribute to the solution; if overall balance is negative (up-
regulation needed), then only consumption curtailment is used, and if overall balance is pos-
itive, then only production curtailment is used.

2. includes “dummy” orders with essentially infinite capacity that represent procurement or
sale of power in the regulating market at costs of c0(x), a linear function of quantity. For
up-regulation, c0(x) = P+(s) · x+ ·φ+x2, and for down-regulation c0(x) = P−(s) · x+ ·φ−x2,
where φ+ and φ− are the slopes of the cost functions for up-regulation and down-regulation
respectively. Note that in case there are balancing orders with prices above P+ or P−, the
dummy orders will be split around such balancing orders. Competition values for φ+ and φ−

are given in Table 2.

3. Sorts the remaining orders by price, with the lowest first.

4. In price order, the DU selects the cheapest orders up to the required capacity. Note that in
general, the most expensive order selected may only be partially exercised.

5. The price for a broker b depends then on both its own imbalance, as well as on its balancing
orders. This computation is the sum of a VCG payment pvcg [16, 5], and an imbalance payment
pimb as defined in more detail below.

The payment for brokers consists of two parts: a payment for the use of its controllable capacity
pvcg, and a payment for its imbalance pimb. Both payments typically are negative (the broker pays)
in case of being short or when selling downwards controllable capacity (e.g., curtail production),
and positive (the broker is paid) when it has a surplus, or can curtail its consumption. In the 2012
competition, as mentioned above, only curtailment of consumption is supported.

The setting for choosing controllable capacity is very similar to a one-sided auction, and for
this part the VCG payment is used. The VCG payment for controllable capacity is defined to be
the marginal contribution of broker b: the difference in (declared) balancing costs for the other
brokers for the remainder of the balance, and the balancing cost of the complete net imbalance
without using b’s controllable capacity. To compute this for a broker b, we compute the optimal
combination of bids while leaving out broker b’s bids, and compare this to the costs to the other
brokers of the optimal combination using the orders of all brokers including b. Additionally, we
resolve the following issues by the second part of the payment pimb.

• We cover the costs of the DU for resolving the imbalance, including both the costs of “dummy
orders” as well as the net payments of the brokers (note that in case of shortage at least some
brokers with controllable consumption will typically receive money).

• We make it uninteresting for brokers to create an imbalance to sell extra controllable capacity,
and

• we provide an incentive to be as closely balanced as possible for brokers that are contributing
to the imbalance.

• Additionally, the total payment by the brokers should be as low as possible (in other words,
it is not a goal of the DU to earn a profit by performing this balancing task).
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The cost for the DU is the sum of the VCG payments and the costs of exercising any dummy orders.
The idea of the imbalance payments is to let the brokers that contribute to the imbalance pay

for both the costs of the DU as well as for the opposite imbalance other brokers may have (since that
also reduces the balancing costs). Similarly to VCG, we remove the part that a broker can influence
(in this case the costs of its own controllable capacity) from the equation. Denoting the set of orders
for controllable capacity by C, and that of a broker b by Cb,s, the costs of the DU for a given net
imbalance X (following from the VCG payments and possibly some dummy orders) is denoted by
DUcosts(C \ Cb,s, X). A broker b with a non-zero imbalance xb,s that does not contribute to the

imbalance (i.e., xb,s · X ≤ 0) then “pays”
DUcosts(C\Cb,s,X)

X
xb,s. The payment for a broker b that

contributes to the imbalance is defined the same in case there are no non-contributing brokers with
controllable capacity. However, when such non-contributing brokers (denoted by B) do exist, we
must make sure that the payment for contributing brokers such as b is sufficient to cover the payment
for all non-contributing brokers. To guarantee this, we exclude all balancing orders of brokers B in

computing the costs for contributing brokers, so broker b pays
DUcosts(C\{Cb,s∪k∈BCk,s},X)

X
xb,s.

8

In the (rare) case that the net imbalance of all brokers is exactly 0, brokers still need to pay
something. In PowerTAC we use −P+(s) · xb,s in case xb,s < 0 and P−(s) · xb,s in case xb,s > 0.

The VCG prices ensure for a single (isolated) time slot that brokers cannot gain from pricing
their orders higher or lower than their real costs (if nobody else changes its bids), and that they
often gain (and never lose) from placing orders for curtailment if they have any. In other words,
myopic brokers should bid their (estimated) actual costs for balancing capacity in the balancing
market. With the second payment, if you expect other brokers to be (almost) balanced, it is better
to be balanced as well.

The following example, graphically depicted in Figure 11, illustrates the balancing mechanism
described above.

Figure 11: The balancing orders are ordered on price. Only capacity up to the current net imbalance
is used.

Example 1. Assume brokers A0, A1, A2, and A3 have imbalances of 0, +40, -80, and -140 kWh,

8In the future, we hope to introduce variants of this mechanism that are a bit cheaper on the brokers, with the
same guarantees.
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respectively, for a total imbalance X = −180kWh. We have six balancing orders bo1 through bo6,
and a dummy order RM . The total imbalance falls within the range of one of the orders, bo5.
All orders with lower prices will be exercised, and bo5 will be partially exercised. The signs in this
example are from the standpoint of the brokers. This means that negative cash values represent
payments from brokers to the DU, and negative energy values represent amounts the brokers have
sold but not acquired, or amounts the brokers can consume by curtailing production.

The next step is to set prices for each broker’s balancing orders, using the VCG mechanism.
For each broker that has orders to be exercised, we must discover the price that would have to be
paid for its capacity if its orders were not in the mix. To see how this works, assume the orders are
as follows: bo1 is (A0, 35 kWh, 0.003/kWh); bo2 is (A0, 62 kWh, .0091/kWh); bo3 is (A1, 67kWh,
.0051/kWh), bo4 is (A1, 30kWh, .008/kWh), bo5 is (A2, 20kWh, .0042/kWh); bo6 is (A2, 39kWh,
.0062/kWh); and RM is (DU, xx kWh, .01/kWh, φ+ = 0.001/kWh). Sorted on the cost, we thus
have the following balancing orders: bo1 , bo5 , bo3 , bo6 , bo4 , bo2 (See Figure 12). To balance we need
all of bo1 , bo5 , bo3 , bo6 and only 19kWh of bo4 .

The (VCG) pricing of the orders for broker A1 can be found by removing bo3 and bo4 (i.e., 67 +
19 (out of 30) kWh), which requires the addition of all 62kWh of bo2 and 24 kWh from order RM .
The marginal cost of leaving broker A1’s orders out is therefore 62 · 0.0091 + 24 · (0.01 + 0.024) =
1.3802.

Figure 12: The price for balancing for broker A1 is determined by the marginal cost in case all
orders from A1 are removed.

To compute the imbalance portion of the payment, we treat the contributing and non-contributing
brokers separately. Since the overall balance is negative, the set of non-contributing brokers thus is
just {A1}. Contributing brokers A2 and A3 pay their shares of the cost to the DU to resolve the
total imbalance, assuming that there are no balancing orders from the non-contributors. For each
broker, the hypothetical total cost paid by the DU is the sum of the VCG payments to the other
contributors, plus the residual amount the DU would have to purchase from the regulating market;
the broker’s share is the product of the total cost and the ratio of its imbalance to the total imbalance.
For e.g. broker A2 we first compute the costs for the DU in case bo3 and bo4 from A1 and bo5 and
bo6 from A2 are removed. For this we compute the VCG payments for all other brokers (A0 and
A4) and sum these (26.481 for A0 since otherwise everything is to be resolved by the RM; A4 does

25



broker Imbalance VCG payment 2nd payment total

0 0 0.904 0 0.904
1 +40 1.3802 5.0564 6.4366
2 -80 0.5248 -15.2 -14.6752
3 -140 0 -17.6976 -17.6976

Table 1: Broker payments for the example

not have controllable loads), add the cost of the remaining 83 kWh at the marginal rate of 0.093,
i.e., 7.719, divide by the overall imbalance X = −180, and multiply by the imbalance of A2 of −80,
giving a payment of 15.2. Broker A1 is a non-contributing broker, so we remove bo3 and bo4 and
compute the VCG payments for A0 (15.035) and A2 (6.903), and the DU cost for the extra 24 kWh
from the regulating market (0.816) to get the hypothetical total DU cost (22.754) and A1’s share of
-5.056444.

All payments are summarised in Table 1.

The total budget for the DU, including all VCG payments and all secondary payments, in this
case amounts to 25.0322.

6.3 Scenario III: dynamic with controllable capacities

In the current (2012) version, the process of Scenario II is repeated every time slot. However, the
incentive issues discussed above do not automatically transfer to a repeated game over multiple
successive timeslots, because the shifting behaviors of the customers must be taken into account.
There may not always be an incentive to be truthful about the price of the curtailment orders,
because in the tariffs their use is typically limited. For example, when a certain load may only be
used once every four time slots, and the broker expects the price of regulating services to go up,
it may be wise to wait. However, the fact that VCG can be used in the static scenario promises
good news for the application of a so-called dynamic-VCG mechanism [4]. This extension is object
of our current study.

7 Competition format and interaction

Number of broker agents As opposed to previous TAC competitions where the number of
agents were fixed in each game, in Power TAC the number of broker agents varies. This is expected
to stimulate more dynamic agent design and a better abstraction of real-world conditions. We will
pick a few game-size values and group them into different sized broker pools to simulate oligopolies
as well as highly competitive markets.

7.1 Competition initialization and Default Broker

To create a fair start of each game, the simulation begins with all customers subscribed to the tariffs
of the default broker, the marketing arm (such as it is) of the DU. These initial tariffs are intended
to be fairly unattractive, so that customers will switch to more attractive tariffs very quickly once
they are offered by the competing brokers.
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A standard competition simulation begins after 15 days of simulation have already run with the
default broker’s tariffs as the only available tariffs. Customer, market, and weather data from the
last 14 days of this pre-game period are collected and sent to brokers at the beginning of a game.
More specifically, this “bootstrap” information includes:

Customer information: for each customer model, and for each power type supported by that
model (such as solar production, consumption, interruptible consumption), the hourly power
consumption is given for each 1-hour time slot during the 14-day bootstrap data-collection
period. Values are negative if the default broker is supplying the power, positive if the customer
is supplying power.

Market information: for each time slot in the data-collection period, the total energy quantity
purchased by the default broker in the wholesale market in MWh, along with the aggregated
price/MWh.

Weather information: the weather reports for each time slot in the bootstrap data-collection
period.

This data is intended to allow brokers to generate a reasonable initial model of the market in time
to compose an initial set of tariff offerings as early in the simulation as possible.

In order to interpret the market prices in the bootstrap dataset, it is necessary to understand the
bidding behavior of the default broker. The default broker estimates the net power it needs to deliver
to its customers by populating a vector for each of its customer subscriptions (each combination
of customer and tariff) of size 7 · 24, or one cell for each time slot in a week. During the second
through nth week, these cells contain the exponentially-smoothed (α = 0.3) net consumption value
for the customer in that time slot, counting from the start of a week. During the first week, it uses
the actual consumption observed in the given hour h during the previous 24 hours, and during the
first day it uses the usage observed in the previous time slot.

Given the default broker’s estimated net energy requirement (summed over all its models) for
each of the following 24 time slots, it attempts to build a market position equal to its estimated
need for that time slot. This is done by submitting an order for a quantity equal to the difference
between its current position and its estimated need, with a limit price ls,t for an order placed at
time t for energy in time slot s, except that if s = t+ 1 (the last chance to purchase or sell power
for time slot s) then no limit price is given; the broker is willing to pay the market price. The limit
price is bounded by minimum and maximum prices lmin and lmax , and computed as follows: First,
a previous price is computed as

lprev =

{

ls,t−1 : if order in previous time slot t− 1 did not clear
lmax : otherwise

(4)

Then, given a random value ν in [0, 1], the limit price is computed as

ls,t = max

(

lmin , 2
lmin − lprev
s− t− 1

)

(5)

The standard competition parameters can be found in Table 2. Values for these parameters are
sent to a broker at the start of every game. For details see the software documentation.
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Table 2: Parameters used in Power TAC tournament games.

Parameter Symbol Standard Game Setting

Number of brokers in a game B 2, 4, and 8

Number of games in a round with 2 brokers G2 12

Number of games in a round with 4 brokers G4 6

Number of games in a round with 8 brokers G8 6

Length of pre-game bootstrap period 14 days

Nominal length of game E 60 days

Probability that there are k time slots after
time slot 1320 (start of day 55) before end of
game

[pmin, pmax] [pω, 1]

Probability of game end for each time slot af-
ter time slot 1320 (start of day 55)

p 1
121

Minimum game length Min(TS) 1320

Expected game length E(TS) 1440

Timeslot length τ 60 minutes

Time compression ratio ρ 720 (5 seconds/time slot)

Open time slots on wholesale market 24

Market closing time 1 time slot ahead

Distribution fee [0.003 - 0.03]e/kWh

Balancing price basis P most recent clearing price

Balancing cost c0 [0.02 - 0.06]e/kWh

Slope of regulating market price φ+, φ− 10−6, 10−6 e/kWh

Default broker’s min and max bid order prices lmin(bid), lmax (bid) -100, -5

Default broker’s min and max ask order prices lmin(ask), lmax (ask) 0.1, 30

Tariff publication fee [1000 - 5000] e

Tariff revocation fee [100 - 500] e

Tariff publication interval 6 time slots

Annual bank debt interest rate [βmin , βmax ] 4.0 – 12.0%

Annual bank deposit interest rate [β′
min , β

′
max ] 0.5β

Weather report interval 1 hour

Weather forecast interval 1 hour

Weather forecast horizon 24 hours

7.2 Competition ending

The game ends at a random number of K time slots after day 55 (time slot 1320), K = 0, 1, . . ..
For each time slot, starting day 55, there is a fixed probability p that the game ends by the end
of that particular time slot. As a consequence, the number of time slots in excess of day 55, K,
follows a geometric distribution. The expected number of time slots in excess of day 55 is equal
to E(K) = (1− p)/p. The cumulative probability distribution that the game ends after at most k
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extra time slots is equal to:

P (K ≤ k) = 1− (1− p)k+1, for k = 0, 1, . . . (6)

The probability ω that the game does not end before day 60 (time slot 1440) is derived from
the inverse cumulative distribution. More generally, we want the probability that the game takes
more than k′ time slots to be at most equal to some ω:

P (K > k′) ≤ ω ⇔ (1− p)k
′+1 ≤ ω (7)

⇒ k′ ≤ lnω

ln(1− p)
− 1 (8)

The end-of-time slot ending probability p will be based on:

P (K > k′) ≤ ω ⇒ p ≥ 1− k′+1
√
ω (9)

If the probability that the game ends after 60 days (time slot 1440 - time slot 1320), k′ = 120,
is to be no more than 1%, ω = 0.01, then the time slot ending probability should be set at
p ≥ 1 − 121

√
0.01 = 0.037. The choice of p will be operationalized as a random drawing from a

uniform distribution defined on the domain [pω, 1], where pω refers to the probabilities calculated
before; for example, p0.01 would be 0.037. Given the random end of game and that each Power TAC
day lasts 120 seconds in real time, an average Power TAC game will last around 2 hours overall.

7.3 External metrics and game logs

In order to allow games to be followed in real time, and also analyzed in depth at a later date, an
additional set of metrics (including the following) will be monitored throughout the game. These
metrics are used by the game viewer to provide a visual representation of the game as it proceeds,
and are stored within the game logs for post-mortem analysis.

• Bank balance for each broker

• Balancing performance for each broker

• All tariff offers and orders exchanged by brokers and customers

• Portfolio of each broker

7.4 Winner determination

Within a competition the performance of its participants has to be evaluated and compared at a
certain point in time. This is usually accomplished by rank ordering all participants according to
one or more defined performance criteria and to declare the best performer in this rank order winner
of the competition. This principle also applies to Power TAC; albeit with quite some differences
compared to previous TAC competitions. Consequently this section describes the performance
criteria used to rank order the Power TAC participants. Note that a wide range of performance
criteria, such as minimizing carbon emissions, maximizing the share of renewable energy, and other
factors can be converted to monetary units by introducing taxes and incentives as part of the
market structure.
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7.4.1 Performance criteria

For each broker, b, participating in game, g, during a competition, c, a profit, πb,c,g, is calculated
as the (monetary) payments, payb,c,g, minus costs, costb,c,g, minus fees, feeb,c,g:

πb,c,g = payb,c,g − costb,c,g − feeb,c,g (10)

• Payments are monetary transfers from customers (consumer) to brokers and are based on
the agreed contract conditions and the actual (ex-post) measured energy consumptions of the
respective customer (consumer) after curtailments are exercised. Other payments for instance
include sales in the wholesale market, and possible payments from external balancing.

• Costs are monetary transfers from brokers to customers (producers) and are based on the
agreed contract conditions between the respective customer (producer) and broker and the
actual (ex-post measured) energy produced after curtailments are exercised. Other costs for
instance include procurement in the wholesale market.

• Fees are (i) the cost for external balancing power (see Section 6) used, (ii) power distribution
fees (in e/KWh) levied by the DU for power delivered to customers, and (iii) a carbon tax.
The carbon tax is a fixed fee (in e/MWh) for each MWh of energy produced from non
renewable energy sources. The carbon tax remains constant throughout a competition and
is publicly announced ahead of the start of the first round. Other fees for instance include
publishing or revoking tariff.

7.4.2 Final ranking algorithm

After each competition round ends, e.g. at the end of the finals, z-scores of the accumulated profits
for each broker are calculated to facilitate comparisons between one competition and another, i.e.
between the 2-player, 4-player, and 8-player competition. If we denote the accumulated profits of
a broker in a competition as πbc, the average accumulated profits of all brokers in the competition
as πc and the standard deviation of all brokers in the competition as Sc, then the standardized
accumulated profits of broker b in competition c, zbc, is obtained as:

zb,c =
πb,c − πc

Sc

, (11)

where

πb,c =

Nb,c
∑

g=1

πb,c,g, (12)

where Nb,c is the number of games broker b played during competition c.
After all competitions C have ended, an overall measure of relative broker performance will be

obtained by summing over the standardized broker performance per competition:

zb =
C
∑

c=1

zbc (13)

where C is the number of competitions.
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7.4.3 Tournament structure

A typical Power TAC tournament consists of several rounds. Each competition, i.e. 2, 4, and 8-player
games, has the following setup:

Qualification Round A chance for each team to test their broker against brokers from other
teams in a real competition environment. This is mainly done to check overall functionality
of a broker and its communication with the competition server.

Seeding Round This round will result in a ranking that is used to determine the broker pools for
the quarter final. It might result in an elimination of brokers that don’t perform according to
the game specification or are purposely disruptive to other agents.

Quarter Finals This is the first real elimination round, since only half of the teams will proceed
to the semi finals.

Semi Finals Elimination round; only half of the teams will proceed to the finals.

Final The winner of this round wins the overall specific competition.

Note: As opposed to previous TAC tournaments where the winner ranking was straightforward,
i.e. after each round, agents in the top half of the performance ranking will proceed to the next
round. In Power TAC we have three individual competitions (2, 4, and 8-player games) and the
overall winner is the one agent with the highest overall accumulated z-score of all competitions (see
Equation 13). For instance, an agent could reach only the quarterfinals in the 2-player competition,
but takes second place in the 4-player competition, and first place in the 8-player competition, and
still wins the overall tournament, since it has the highest accumulated z-score.

7.5 Competition rules

In the following list we highlight the competition rules that each participant team has to follow;
failure to do so will lead to disqualification from the overall tournament. The decision rests with
the current game master.

• Information about external metrics and game logs are not provided to a broker directly, and
agents should not attempt to access it though external means (i.e. through the game viewer
or the server logs). The use of such external information, either manually or automatically,
is regarded as external ‘tuning’ of the agent. As such, according to the existing competition
rules, it is forbidden within any specific round during the competition. Tuning with any
available data on the other hand is allowed between the different tournament rounds.

• Data that agents discover on their own during a game can be used to fine-tune their agent in
games within a round.

• Collusion is not allowed between the different agents.

• To discourage anti-competitive collusion, no team is allowed to enter the competition with
two different agent identities.

• For efficient tournament scheduling, each team must be able to run two copies of their agent
at any time in the tournament, since agents are required to participate in different pools at
the same time.
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8 System architecture

8.1 Tournament deployment

Power TAC is designed to run as an annual competition, a model that has been very effective in
stimulating research. Each year, research groups build or update their agents and enter them in
the competition. The competition systems architecture is shown in Figure 13.

The tournament configuration is intended to support multi-round tournaments, with large num-
bers of visualizers. The administration portion of the web application supports tournament schedul-
ing and access to records of past games. The web-app also serves as a proxy to allow visualizers
access to running games on potentially several simulation servers.

Figure 13: Competition systems architecture.

A single web app can control multiple servers on multiple hosts, by storing game configuration
in a shared database and then starting a server on a remote host, or notifying a running server of a
game configuration that is ready to run. Weather and market price data will be served by remote
services, hosted on their own databases. The shared database will hold summary information for
completed games, including access information for retrieving game logs.

Brokers register with the web app, and join a game by requesting credentials and a URL for an
active simulation. With this information, it then logs into the simulation server and runs its game
interactions.

8.2 Research deployment

After the competition, teams are encouraged to release their agent code, so all teams can design and
run their own experiments using a range of broker behaviors and market design details. The research
systems architecture is shown in Figure 14. The results are published, and teams incorporate new
insights into their agent designs for the following year.

The goal of the research configuration is to support development of agents and server models
(customers, markets, etc.) and to support empirical research. In this configuration, the server must
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be easily deployable on a desktop workstation, without requiring special privileges, and with min-
imal dependencies on other installed software, such as a database. In addition, this configuration
must meet the following requirements:

• Single-simulation setup from a simple web interface.

• Optionally allow agent login without credentials.

• Visualizer support for at least one browser.

Figure 14 shows the components of this configuration. The simulation server is identical to
the tournament version, and a portion of the web app is installed in the server. Through the web
interface, a user can configure and start a game, and use the visualizer to watch the game. Weather
and price data may be contained in flat files, or a research server could potentially access the
weather and price services from a tournament installation. The game data is dumped to a flat file
at the conclusion of each game.

Figure 14: Research systems architecture.

Brokers may optionally log into the simulation server directly, without authentication. Oth-
erwise, the web app will perform the authentication as in the tournament setup, and pass back
credentials for access to the simulation server. Each year, the simulation may be updated to add
new challenges, and if necessary to tune the market designs and level of realism to enhance the
relevance of the shared enterprise for both research value and policy guidance.
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A Assumptions

In particular we make the following assumptions:

1. Within the simulated region, grid constraints (line capacity limitations) are assumed to be
non existent, i.e. power flows within the region are unconstrained. Local distribution grids
are typically over-dimensioned with respect to their line capacities, thus this assumption is
not a strong restriction but may have to be rethought in future once much more distributed
generators and storage facilities are installed.

2. Power factor effects, i.e. phase shifts between voltage and current, are not taken into ac-
count. Modeling these effects would possibly influence the brokers’ decision making on which
consumers and producers to add to their portfolios but is out of scope at this time.

3. Power distribution and transformation losses are ignored. In Germany these losses are esti-
mated at 3%; for North America they are estimated at 5,5% [8]. These losses can be considered
as being more or less constant within a distribution grid and identical for all grid participants.
Thus the validity of the simulation results is not affected.

4. Two kinds of producers (energy production facilities) are distinguished. One kind (photo-
voltaic arrays, wind turbines) produce power when active, and are under control of their
respective owners. The second kind (PEV batteries, some CHP units) is called “controllable”
and may be switched on or off, or have its output adjusted remotely within its capacity range.

5. Technical load balancing (i.e. the real time operations of the local distribution grid) is ac-
complished outside the action domain of the competition participants using a combination of
controllable generators and spinning reserves.

6. The simulation will model time as a series of discrete “time slots” rather than as continuous
time. This models the trading intervals in the regional wholesale market, and enables the
simulation to model a period of days rather than minutes or hours.

7. The temporal distribution of energy consumption and generation within a time slot is not
taken into account. This means for example that balancing power demand for a time slot is
calculated as the difference of the sum of generation and the sum of consumption for that
time slot and not as the instantaneous difference between the two timeseries.

8. Some portion of the load, including the charging and discharging of plug-in Electric Vehicles
(PEVs), could be controlled by voluntary or automated means, using prospective or real-time
price signals.
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