473 research outputs found

    On the Ionisation of Warm Opaque Interstellar Clouds and the Intercloud Medium

    Get PDF
    In this paper we use a number of observations to construct an integrated picture of the ionisation in the interiors of quiescent warm opaque interstellar clouds and in the intercloud medium (ICM) outside dense HII regions and hot dilute bubbles. Our main conclusion is that within ∼\sim 1kpc of the sun the ionisation rate of hydrogen per unit volume in both the interiors of such clouds and in the ICM is independent of the local density of neutral hydrogen, and varies with position by less than ∼\sim 20 per cent. These conclusions strongly favour the decaying neutrino hypothesis for the ionisation of the interstellar medium in these regions. Our analysis is based on a variety of observations, of which the most remarkable is the discovery by Spitzer and Fitzpatrick (1993) that, in the four slowly moving clouds along the line of sight to the halo star HD93521, the column densities of both SII and CII∗^*, which individually range over a factor ∼\sim4, are proportional to the column density of HI to within ∼\sim20 per cent. This proportionality is used to show that the free electrons exciting the CII to CII∗^* are located mainly in the interiors of the clouds, rather than in their skins, despite the large opacity of the clouds to Lyman continuum radiation. The same conclusion also follows more unambiguously from the low value of the Hα\alpha flux in this direction which was found by Reynolds (1996) in unpublished observations. These results are then used, in conjunction with observations of three pulsar parallaxes and dispersion measures, and with data on HeI, NII and OI line emissions, to constrain the ionisation of H, He, N and O and the flux of Lyman continuum photons from O stars in the ICM.Comment: 16 pages, no figures, Latex fil

    Astrometric and Timing Effects of Gravitational Waves from Localized Sources

    Get PDF
    A consistent approach for an exhaustive solution of the problem of propagation of light rays in the field of gravitational waves emitted by a localized source of gravitational radiation is developed in the first post-Minkowskian and quadrupole approximation of General Relativity. We demonstrate that the equations of light propagation in the retarded gravitational field of an arbitrary localized source emitting quadrupolar gravitational waves can be integrated exactly. The influence of the gravitational field on the light propagation is examined not only in the wave zone but also in cases when light passes through the intermediate and near zones of the source. Explicit analytic expressions for light deflection and integrated time delay (Shapiro effect) are obtained accounting for all possible retardation effects and arbitrary relative locations of the source of gravitational waves, that of light rays, and the observer. It is shown that the ADM and harmonic gauge conditions can both be satisfied simultaneously outside the source of gravitational waves. Their use drastically simplifies the integration of light propagation equations and those for the motion of light source and observer in the field of the source of gravitational waves, leading to the unique interpretation of observable effects. The two limiting cases of small and large values of impact parameter are elaborated in more detail. Explicit expressions for Shapiro effect and deflection angle are obtained in terms of the transverse-traceless part of the space-space components of the metric tensor. We also discuss the relevance of the developed formalism for interpretation of radio interferometric and timing observations, as well as for data processing algorithms for future gravitational wave detectors.Comment: 43 pages, 4 Postscript figures, uses revtex.sty, accepted to Phys. Rev. D, minor corrections in formulae regarding algebraic sign

    Universal criterion for the breakup of invariant tori in dissipative systems

    Full text link
    The transition from quasiperiodicity to chaos is studied in a two-dimensional dissipative map with the inverse golden mean rotation number. On the basis of a decimation scheme, it is argued that the (minimal) slope of the critical iterated circle map is proportional to the effective Jacobian determinant. Approaching the zero-Jacobian-determinant limit, the factor of proportion becomes a universal constant. Numerical investigation on the dissipative standard map suggests that this universal number could become observable in experiments. The decimation technique introduced in this paper is readily applicable also to the discrete quasiperiodic Schrodinger equation.Comment: 13 page

    Interstellar Holography

    Get PDF
    The dynamic spectrum of a radio pulsar is an in-line digital hologram of the ionised interstellar medium. It has previously been demonstrated that such holograms permit image reconstruction, in the sense that one can determine an approximation to the complex electric field values as a function of Doppler-shift and delay, but to date the quality of the reconstructions has been poor. Here we report a substantial improvement in the method which we have achieved by simultaneous optimisation of the thousands of coefficients that describe the electric field. For our test spectrum of PSR B0834+06 we find that the model provides an accurate representation of the data over the full 63 dB dynamic range of the observations: residual differences between model and data are noise-like. The advent of interstellar holography enables detailed quantitative investigation of the interstellar radio-wave propagation paths for a given pulsar at each epoch of observation; we illustrate this using our test data which show the scattering material to be structured and highly anisotropic. The temporal response of the medium exhibits a scattering tail out to beyond 100 microsec and a pulse arrival time measurement at this frequency and this epoch of observation would be affected by a mean delay of 15 microsec due to multipath propagation in the interstellar medium.Comment: Submitted to MNRAS, 8 pages, 5 figure

    Astrometry and geodesy with radio interferometry: experiments, models, results

    Full text link
    Summarizes current status of radio interferometry at radio frequencies between Earth-based receivers, for astrometric and geodetic applications. Emphasizes theoretical models of VLBI observables that are required to extract results at the present accuracy levels of 1 cm and 1 nanoradian. Highlights the achievements of VLBI during the past two decades in reference frames, Earth orientation, atmospheric effects on microwave propagation, and relativity.Comment: 83 pages, 19 Postscript figures. To be published in Rev. Mod. Phys., Vol. 70, Oct. 199

    The astrometric core solution for the Gaia mission. Overview of models, algorithms and software implementation

    Get PDF
    The Gaia satellite will observe about one billion stars and other point-like sources. The astrometric core solution will determine the astrometric parameters (position, parallax, and proper motion) for a subset of these sources, using a global solution approach which must also include a large number of parameters for the satellite attitude and optical instrument. The accurate and efficient implementation of this solution is an extremely demanding task, but crucial for the outcome of the mission. We provide a comprehensive overview of the mathematical and physical models applicable to this solution, as well as its numerical and algorithmic framework. The astrometric core solution is a simultaneous least-squares estimation of about half a billion parameters, including the astrometric parameters for some 100 million well-behaved so-called primary sources. The global nature of the solution requires an iterative approach, which can be broken down into a small number of distinct processing blocks (source, attitude, calibration and global updating) and auxiliary processes (including the frame rotator and selection of primary sources). We describe each of these processes in some detail, formulate the underlying models, from which the observation equations are derived, and outline the adopted numerical solution methods with due consideration of robustness and the structure of the resulting system of equations. Appendices provide brief introductions to some important mathematical tools (quaternions and B-splines for the attitude representation, and a modified Cholesky algorithm for positive semidefinite problems) and discuss some complications expected in the real mission data.Comment: 48 pages, 19 figures. Accepted for publication in Astronomy & Astrophysic

    Detection of hydrogen fluoride absorption in diffuse molecular clouds with Herschel/HIFI: a ubiquitous tracer of molecular gas

    Get PDF
    We discuss the detection of absorption by interstellar hydrogen fluoride (HF) along the sight line to the submillimeter continuum sources W49N and W51. We have used Herschel's HIFI instrument in dual beam switch mode to observe the 1232.4762 GHz J = 1 - 0 HF transition in the upper sideband of the band 5a receiver. We detected foreground absorption by HF toward both sources over a wide range of velocities. Optically thin absorption components were detected on both sight lines, allowing us to measure - as opposed to obtain a lower limit on - the column density of HF for the first time. As in previous observations of HF toward the source G10.6-0.4, the derived HF column density is typically comparable to that of water vapor, even though the elemental abundance of oxygen is greater than that of fluorine by four orders of magnitude. We used the rather uncertain N(CH)-N(H2) relationship derived previously toward diffuse molecular clouds to infer the molecular hydrogen column density in the clouds exhibiting HF absorption. Within the uncertainties, we find that the abundance of HF with respect to H2 is consistent with the theoretical prediction that HF is the main reservoir of gas-phase fluorine for these clouds. Thus, hydrogen fluoride has the potential to become an excellent tracer of molecular hydrogen, and provides a sensitive probe of clouds of small H2 column density. Indeed, the observations of hydrogen fluoride reported here reveal the presence of a low column density diffuse molecular cloud along the W51 sight line, at an LSR velocity of ~ 24kms-1, that had not been identified in molecular absorption line studies prior to the launch of Herschel.Comment: 4 pages, 3 figures, A&A Letter special issue, accepted on 07/13/201

    Tracing light propagation to the intrinsic accuracy of space-time geometry

    Full text link
    Advancement in astronomical observations and technical instrumentation requires coding light propagation at high level of precision; this could open a new detection window of many subtle relativistic effects suffered by light while it is propagating and entangled in the physical measurements. Light propagation and its subsequent detection should indeed be conceived in a fully relativistic context, in order to interpret the results of the observations in accordance with the geometrical environment affecting light propagation itself, as an unicum surrounding universe. One of the most intriguing aspects is the boost towards the development of highly accurate models able to recon- struct the light path consistently with General Relativity and the precepts of measurements. This paper deals with the complexity of such a topic by showing how the geometrical framework of models like RAMOD, initially developed for astrometric observations, constitutes an appropriate physical environment for back tracing a light ray conforming to the intrinsic accuracy of space-time. This article discusses the reasons why RAMOD stands out among the existent approaches applied to the light propagation problem and provides a proof of its capability in recasting recent literature cases.Comment: 15 pages, 5 figures. Revised version, references and appendixes added. PRD re-submitte

    Assessing the Effects of Personal Characteristics and Context on U.S. House Speakers’ Leadership Styles, 1789-2006

    Get PDF
    Research on congressional leadership has been dominated in recent decades by contextual interpretations that see leaders’ behavior as best explained by the environment in which they seek to exercise leadership—particularly, the preference homogeneity and size of their party caucus. The role of agency is thus discounted, and leaders’ personal characteristics and leadership styles are underplayed. Focusing specifically on the speakers of the U.S. House of Representatives from the first to the 110th Congress, we construct measures of each speaker’s commitment to comity and leadership assertiveness. We find the scores reliable and then test the extent to which a speaker’s style is the product of both political context and personal characteristics. Regression estimates on speakers’ personal assertiveness scores provide robust support for a context-plus-personal characteristics explanation, whereas estimates of their comity scores show that speakers’ personal backgrounds trump context
    • …
    corecore