12,612 research outputs found
Japan and the East Asian financial crisis: patterns, motivations and instrumentalisation of Japanese regional economic diplomacy
At first sight, the East Asian financial crisis represents an instance of Japan failing the test of regional leadership - as evidenced by its abandonment of initial proposals for an Asian Monetary Fund (AMF) in the face of US and Chinese opposition in 1997. However, if a second look is taken, and one which is sensitised to the fundamental characteristics of its diplomacy, then Japan can be seen as far more effective in augmenting its regional leadership role than previously imagined. Indeed, this article demonstrates that Japanese policy-makers have resurrected, over the longer term and in different guises, AMF-like frameworks which provide a potential springboard for further regional cooperation. Hence, the aims of this article are twofold. The first is to demonstrate the overall efficacy of Japanese regional economic diplomacy, and its ability to control outcomes through steering East Asia towards enhanced monetary cooperation. The second is to explain the reasons behind Japan's distinctive policy approach towards the financial crisis and general lessons for understanding its foreign policy. The article seeks to do so by asking three fundamental questions about the 'what', 'why' and 'how' of Japan's regional role: 'what' in terms of the dominant behavioural patterns of Japan's economic diplomacy; 'why' in terms of the motivations for this behaviour; and 'how' in terms of Japan's instrumentalisation of its regional policy
Access to and use of marine genetic resources : understanding the legal framework
This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Acknowledgements This work was supported by the PharmaSea project funded by the EU Seventh Framework Programme, and reects only the authors' views. Contract number 312184. www.pharma-sea.eu.Peer reviewedPublisher PD
Multipole strength function of deformed superfluid nuclei made easy
We present an efficient method for calculating strength functions using the
finite amplitude method (FAM) for deformed superfluid heavy nuclei within the
framework of the nuclear density functional theory. We demonstrate that FAM
reproduces strength functions obtained with the fully self-consistent
quasi-particle random-phase approximation (QRPA) at a fraction of computational
cost. As a demonstration, we compute the isoscalar and isovector monopole
strength for strongly deformed configurations in Pu by considering huge
quasi-particle QRPA spaces. Our approach to FAM, based on Broyden's iterative
procedure, opens the possibility for large-scale calculations of strength
distributions in well-bound and weakly bound nuclei across the nuclear
landscape.Comment: 5 pages, 3 figure
Draft genome sequence of the antimycin-producing bacterium Streptomyces sp. strain SM8, isolated from the marine sponge Haliclona simulans
Streptomyces sp. strain SM8, isolated from Haliclona simulans, possesses antifungal and antibacterial activities and inhibits the calcineurin pathway in yeast. The draft genome sequence is 7,145,211 bp, containing 5,929 predicted coding sequences. Several secondary metabolite biosynthetic gene clusters are present, encoding known and novel metabolites, including antimycin
Draft genome sequence of Pseudomonas putida CA-3, a bacterium capable of styrene degradation and medium-chain-length polyhydroxyalkanoate synthesis
Pseudomonas putida strain CA-3 is an industrial bioreactor isolate capable of synthesizing biodegradable polyhydroxyalkanoate polymers via the metabolism of styrene and other unrelated carbon sources. The pathways involved are subject to regulation by global cellular processes. The draft genome sequence is 6,177,154 bp long and contains 5,608 predicted coding sequences
Wavelength-tuneable liquid crystal lasers from the visible to the near-infrared
The study of band-edge lasing from dye-doped chiral nematic liquid crystals has thus far been largely restricted to visible wavelengths. In this paper, a wide range of commercially available laser dyes are examined for their suitability as infrared emitters within a chiral nematic host. Problems such as poor solubility and reduced quantum efficiencies are overcome, and successful band-edge lasing is demonstrated within the range of 735-850 nm, using the dyes LD800, HITC-P and DOTC-P.This paper also reports on progress towards widely tuneable liquid crystal lasers, capable of emission in the region 460-850 nm. Key to this is the use of common pump source, capable of simultaneously exciting all of the dyes (both infrared and visible) that are present within the system. Towards this aim, we successfully demonstrate near-infrared lasing (800 nm) facilitated by Forster energy transfer between the visible dye DCM, and the infra-red dye LD800, enabling pump wavelengths anywhere between 420 and 532 nm to be used.These results demonstrate that small and low-cost tuneable visible to near-infrared laser sources are achievable, using a single common pump source. Such devices are envisaged to have wide-ranging applications including medical imaging (including optical coherence tomography), point-of-care optical medical diagnostics (such as flow cytometry), telecommunications, and optical signatures for security coatings.</p
Synthesis of Nm-PHB (nanomelanin-polyhydroxy butyrate) nanocomposite film and its protective effect against biofilm-forming multi drug resistant Staphylococcus aureus
Melanin is a dark brown ubiquitous photosynthetic pigment which have many varied and ever expanding applications in fabrication of radio-protective materials, food packaging, cosmetics and in medicine. In this study, melanin production in a Pseudomonas sp. which was isolated from the marine sponge Tetyrina citirna was optimized employing one-factor at a time experiments and characterized for chemical nature and stability. Following sonication nucleated nanomelanin (Nm) particles were formed and evaluated for antibacterial and antioxidant properties. Nanocomposite film was fabricated using combinations (% w/v) of polyhydroxy butyrate-nanomelanin (PHB: Nm) blended with 1% glycerol. The Nm was found to be spherical in shape with a diameter of 100-140 nm and showed strong antimicrobial activity against both Gram positive and Gram negative bacteria. The Nm-PHB nanocomposite film was homogeneous, smooth, without any cracks, and flexible. XRD and DSC data indicated that the film was crystalline in nature, and was thermostable up to 281.87 degrees C. This study represents the first report on the synthesis of Nm and fabrication of Nm-PHB nanocomposite film which show strong protective effect against multidrug resistant Staphyloccoccus aureus. Thus this Nm-PHB nanocomposite film may find utility as packaging material for food products by protecting the food products from oxidation and bacterial contamination
Differential expression of genes involved in iron metabolism in Aspergillus fumigatus
The ability of fungi to survive in many environments is linked to their capacity to acquire essential nutrients. Iron is generally complexed and available in very limited amounts. Like bacteria, fungi have evolved highly specific systems for iron acquisition. Production and uptake of iron-chelating siderophores has been shown to be important for certain human bacterial pathogens, as well as in fungal pathogens such as Cryptococcus neoformans and Fusarium graminearum. This system also enables the opportunistic fungal pathogen Aspergillus fumigatus to infect and subsequently colonize the human lung. In this study, advantage was taken of genome sequence data available for both Aspergillus nidulans and A. fumigatus either to partially clone or to design PCR primers for 10 genes putatively involved in siderophore biosynthesis or uptake in A. fumigatus. The expression of these genes was then monitored by semi-quantitative and quantitative real-time PCR over a range of iron concentrations. As expected, the putative biosynthetic genes sidA, sidC and sidD were all strongly up-regulated under iron starvation conditions, although the variable degree of induction indicates complex regulation by a number of transcriptional factors, including the GATA family protein SreA. In contrast, the gene sidE shows no iron-regulation, suggesting that SidE may not be involved in siderophore biosynthesis. The characterisation of the expression patterns of this subset of genes in the iron regulon facilitates further studies into the importance of iron acquisition for pathogenesis of A. fumigatus. [Int Microbiol 2006; 9(4):281-287
Cloning and characterization of novel methylsalicylic acid synthase gene involved in the biosynthesis of isoasperlactone and asperlactone in Aspergillus westerdijkiae
Aspergillus westerdijkiae is the main producer of several biologically active polyketide metabolites including isoasperlactone and asperlactone. A 5298 bp polyketide synthase gene ‘‘aomsas” has been cloned in Aspergillus westerdijkiae by using gene walking approach and RACE-PCR. The predicted amino acid sequence of aomsas shows an identity of 40–56% with different methylsalicylic acid synthase genes found in Byssochlamys nivea, P. patulum, A. terreus and Streptomyces viridochromogenes. Based on the reverse transcription PCR and kinetic secondary metabolites production studies, aomsas expression was found to be associated with the biosynthesis of isoasperlactone and asperlactone. Moreover an aomsas knockout mutant ‘‘aoDmsas” of A. westerdijkiae, not only lost the capacity to produce isoasperlactone and asperlactone,but also 6-methylsalicylic acid. The genetically complemented mutant ao+msas restored the biosynthesis of all the missing metabolites. Chemical complementation through the addition of 6-methylsalicylic acid, aspyrone and diepoxide to growing culture of aoDmsas mutant revealed that these compounds play intermediate roles in the biosynthesis of asperlactone and isoasperlactone
Dynamic exchange-correlation potentials for the electron gas in dimensionality D=3 and D=2
Recent progress in the formulation of a fully dynamical local approximation
to time-dependent Density Functional Theory appeals to the longitudinal and
transverse components of the exchange and correlation kernel in the linear
current-density response of the homogeneous fluid at long wavelength. Both
components are evaluated for the electron gas in dimensionality D=3 and D=2 by
an approximate decoupling in the equation of motion for the current density,
which accounts for processes of excitation of two electron-hole pairs. Each
pair is treated in the random phase approximation, but the role of exchange and
correlation is also examined; in addition, final-state exchange processes are
included phenomenologically so as to satisfy the exactly known high-frequency
behaviours of the kernel. The transverse and longitudinal spectra involve the
same decay channels and are similar in shape. A two-plasmon threshold in the
spectrum for two-pair excitations in D=3 leads to a sharp minimum in the real
part of the exchange and correlation kernel at twice the plasma frequency. In
D=2 the same mechanism leads to a broad spectral peak and to a broad minimum in
the real part of the kernel, as a consequence of the dispersion law of the
plasmon vanishing at long wavelength. The numerical results have been fitted to
simple analytic functions.Comment: 13 pages, 11 figures included. Accepted for publication in Phys. Rev.
- …
