1,143 research outputs found

    Variational Schrieffer-Wolff transformations for quantum many-body dynamics

    Full text link
    Building on recent results for adiabatic gauge potentials, we propose a variational approach for computing the generator of Schrieffer-Wolff transformations. These transformations consist of block diagonalizing a Hamiltonian through a unitary rotation, which leads to effective dynamics in a computationally tractable reduced Hilbert space. The generators of these rotations are computed variationally and thus go beyond standard perturbative methods, with error controlled by the locality of the variational ansatz. The method is demonstrated on two models. First, in the attractive Fermi-Hubbard model with onsite disorder, we find indications of a lack of observable many-body localization in the thermodynamic limit due to the inevitable mixture of different spinon sectors. Second, in the low-energy sector of the XY spin model with a broken U(1) symmetry, we analyze ground-state response functions by combining the variational Schrieffer-Wolf transformation with the truncated spectrum approach.Published versio

    Read-Green resonances in a topological superconductor coupled to a bath

    Full text link
    We study a topological superconductor capable of exchanging particles with an environment. This additional interaction breaks particle-number symmetry and can be modelled by means of an integrable Hamiltonian, building on the class of Richardson-Gaudin pairing models. The isolated system supports zero-energy modes at a topological phase transition, which disappear when allowing for particle exchange with an environment. However, it is shown from the exact solution that these still play an important role in system-environment particle exchange, which can be observed through resonances in low-energy and -momentum level occupations. These fluctuations signal topologically protected Read-Green points and cannot be observed within traditional mean-field theory.Comment: 7 pages, 4 figure

    Floquet-engineering counterdiabatic protocols in quantum many-body systems

    Full text link
    Counterdiabatic (CD) driving presents a way of generating adiabatic dynamics at arbitrary pace, where excitations due to non-adiabaticity are exactly compensated by adding an auxiliary driving term to the Hamiltonian. While this CD term is theoretically known and given by the adiabatic gauge potential, obtaining and implementing this potential in many-body systems is a formidable task, requiring knowledge of the spectral properties of the instantaneous Hamiltonians and control of highly nonlocal multibody interactions. We show how an approximate gauge potential can be systematically built up as a series of nested commutators, remaining well-defined in the thermodynamic limit. Furthermore, the resulting CD driving protocols can be realized up to arbitrary order without leaving the available control space using tools from periodically-driven (Floquet) systems. This is illustrated on few- and many-body quantum systems, where the resulting Floquet protocols significantly suppress dissipation and provide a drastic increase in fidelity.Comment: 6+3 page

    Inner products in integrable Richardson-Gaudin models

    Get PDF
    We present the inner products of eigenstates in integrable Richardson-Gaudin models from two different perspectives and derive two classes of Gaudin-like determinant expressions for such inner products. The requirement that one of the states is on-shell arises naturally by demanding that a state has a dual representation. By implicitly combining these different representations, inner products can be recast as domain wall boundary partition functions. The structure of all involved matrices in terms of Cauchy matrices is made explicit and used to show how one of the classes returns the Slavnov determinant formula. This framework provides a further connection between two different approaches for integrable models, one in which everything is expressed in terms of rapidities satisfying Bethe equations, and one in which everything is expressed in terms of the eigenvalues of conserved charges, satisfying quadratic equations.Comment: 21+16 pages, minor revisions compared to the previous versio

    Integrable spin-1/2 Richardson-Gaudin XYZ models in an arbitrary magnetic field

    Full text link
    We establish the most general class of spin-1/2 integrable Richardson-Gaudin models including an arbitrary magnetic field, returning a fully anisotropic (XYZ) model. The restriction to spin-1/2 relaxes the usual integrability constraints, allowing for a general solution where the couplings between spins lack the usual antisymmetric properties of Richardson-Gaudin models. The full set of conserved charges are constructed explicitly and shown to satisfy a set of quadratic equations, allowing for the numerical treatment of a fully anisotropic central spin in an external magnetic field. While this approach does not provide expressions for the exact eigenstates, it allows their eigenvalues to be obtained, and expectation values of local observables can then be calculated from the Hellmann-Feynman theorem.Comment: 11 pages, 1 figur

    Integrability and duality in spin chains

    Get PDF
    We construct a new, two-parametric family of integrable models and reveal their underlying duality symmetry. A modular subgroup of this duality is shown to connect non-interacting modes of different systems. We apply the new solution and duality to a Richardson-Gaudin model and generate a novel integrable system termed the ss-dd wave Richardson-Gaudin-Kitaev interacting chain, interpolating ss- and dd- wave superconductivity. The phase diagram of this model has a topological phase transition that can be connected to the duality, where the occupancy of the non-interacting mode serves as a topological order parameter.Comment: 10 pages, 2 figures, typos added, reference added, footnote [58] added on page 2, changed phrasing on YBE, acknowledgements update

    PopCORN: Hunting down the differences between binary population synthesis codes

    Get PDF
    Binary population synthesis (BPS) modelling is a very effective tool to study the evolution and properties of close binary systems. The uncertainty in the parameters of the model and their effect on a population can be tested in a statistical way, which then leads to a deeper understanding of the underlying physical processes involved. To understand the predictive power of BPS codes, we study the similarities and differences in the predicted populations of four different BPS codes for low- and intermediate-mass binaries. We investigate whether the differences are caused by different assumptions made in the BPS codes or by numerical effects. To simplify the complex problem of comparing BPS codes, we equalise the inherent assumptions as much as possible. We find that the simulated populations are similar between the codes. Regarding the population of binaries with one WD, there is very good agreement between the physical characteristics, the evolutionary channels that lead to the birth of these systems, and their birthrates. Regarding the double WD population, there is a good agreement on which evolutionary channels exist to create double WDs and a rough agreement on the characteristics of the double WD population. Regarding which progenitor systems lead to a single and double WD system and which systems do not, the four codes agree well. Most importantly, we find that for these two populations, the differences in the predictions from the four codes are not due to numerical differences, but because of different inherent assumptions. We identify critical assumptions for BPS studies that need to be studied in more detail.Comment: 13 pages, +21 pages appendix, 35 figures, accepted for publishing in A&A, Minor change to match published version, most important the added link to the website http://www.astro.ru.nl/~silviato/popcorn for more detailed figures and informatio
    • …
    corecore