97 research outputs found

    Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    Get PDF
    A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN

    Progress in Diamond Detector Development

    Get PDF
    Detectors based on Chemical Vapor Deposition (CVD) diamond have been used successfully in Luminosity and Beam Condition Monitors (BCM) in the highest radiation areas of the LHC. Future experiments at CERN will accumulate an order of magnitude larger fluence. As a result, an enormous effort is underway to identify detector materials that can operate under fluences of 1 · 1016 n cm−2 and 1 · 1017 n cm−2. Diamond is one candidate due to its large displacement energy that enhances its radiation tolerance. Over the last 30 years the RD42 collaboration has constructed diamond detectors in CVD diamond with a planar geometry and with a 3D geometry to extend the material's radiation tolerance. The 3D cells in these detectors have a size of 50 µm×50 µm with columns of 2.6 µm in diameter and 100 µm×150 µm with columns of 4.6 µm in diameter. Here we present the latest beam test results from planar and 3D diamond pixel detectors

    A study of the radiation tolerance of cvd diamond to 70 mev protons, fast neutrons and 200 mev pions

    Get PDF
    We measured the radiation tolerance of commercially available diamonds grown by the Chemical Vapor Deposition process by measuring the charge created by a 120 GeV hadron beam in a 50 μm pitch strip detector fabricated on each diamond sample before and after irradiation. We irradiated one group of samples with 70 MeV protons, a second group of samples with fast reactor neutrons (defined as energy greater than 0.1 MeV), and a third group of samples with 200 MeV pions, in steps, to (8.8±0.9) × 1015^{15} protons/cm2^{2}, (1.43±0.14) × 1016^{16} neutrons/cm2^{2}, and (6.5±1.4) × 1014 pions/cm2^{2}, respectively. By observing the charge induced due to the separation of electron–hole pairs created by the passage of the hadron beam through each sample, on an event-by-event basis, as a function of irradiation fluence, we conclude all datasets can be described by a first-order damage equation and independently calculate the damage constant for 70 MeV protons, fast reactor neutrons, and 200 MeV pions. We find the damage constant for diamond irradiated with 70 MeV protons to be 1.62±0.07(stat)±0.16(syst)× 10−18 cm2^{2}/(pμm), the damage constant for diamond irradiated with fast reactor neutrons to be 2.65±0.13(stat)±0.18(syst)× 10−18 cm2^{2}/(nμm), and the damage constant for diamond irradiated with 200 MeV pions to be 2.0±0.2(stat)±0.5(syst)× 10−18 cm2^{2}/(πμm). The damage constants from this measurement were analyzed together with our previously published 24 GeV proton irradiation and 800 MeV proton irradiation damage constant data to derive the first comprehensive set of relative damage constants for Chemical Vapor Deposition diamond. We find 70 MeV protons are 2.60 ± 0.29 times more damaging than 24 GeV protons, fast reactor neutrons are 4.3 ± 0.4 times more damaging than 24 GeV protons, and 200 MeV pions are 3.2 ± 0.8 more damaging than 24 GeV protons. We also observe the measured data can be described by a universal damage curve for all proton, neutron, and pion irradiations we performed of Chemical Vapor Deposition diamond. Finally, we confirm the spatial uniformity of the collected charge increases with fluence for polycrystalline Chemical Vapor Deposition diamond, and this effect can also be described by a universal curve

    Beam test results of 3D pixel detectors constructed with poly-crystalline CVD diamond

    Get PDF
    As a possible candidate for extremely radiation tolerant tracking devices we present a novel detector design - namely 3D detectors - based on poly-crystalline CVD diamond sensors with a pixel readout. The fabrication of recent 3D detectors as well their results in recent beam tests are presented. We measured the hit efficiency and signal response of two 3D diamond detectors with 50 × 50 μm cell sizes using pixel readout chip technologies currently used at CMS and ATLAS. In all runs, both devices attained efficiencies >98 % in a normal incident test beam of minimum ionising particles. The highest efficiency observed during the beam tests was 99.2 %
    • …
    corecore