248 research outputs found

    Algorithmic Interpretations of Fractal Dimension

    Get PDF
    We study algorithmic problems on subsets of Euclidean space of low fractal dimension. These spaces are the subject of intensive study in various branches of mathematics, including geometry, topology, and measure theory. There are several well-studied notions of fractal dimension for sets and measures in Euclidean space. We consider a definition of fractal dimension for finite metric spaces which agrees with standard notions used to empirically estimate the fractal dimension of various sets. We define the fractal dimension of some metric space to be the infimum delta>0, such that for any eps>0, for any ball B of radius r >= 2eps, and for any eps-net N, we have |B cap N|=O((r/eps)^delta). Using this definition we obtain faster algorithms for a plethora of classical problems on sets of low fractal dimension in Euclidean space. Our results apply to exact and fixed-parameter algorithms, approximation schemes, and spanner constructions. Interestingly, the dependence of the performance of these algorithms on the fractal dimension nearly matches the currently best-known dependence on the standard Euclidean dimension. Thus, when the fractal dimension is strictly smaller than the ambient dimension, our results yield improved solutions in all of these settings. We remark that our definition of fractal definition is equivalent up to constant factors to the well-studied notion of doubling dimension. However, in the problems that we consider, the dimension appears in the exponent of the running time, and doubling dimension is not precise enough for capturing the best possible such exponent for subsets of Euclidean space. Thus our work is orthogonal to previous results on spaces of low doubling dimension; while algorithms on spaces of low doubling dimension seek to extend results from the case of low dimensional Euclidean spaces to more general metric spaces, our goal is to obtain faster algorithms for special pointsets in Euclidean space

    Highly Reflective Dielectric Back Reflector for Improved Efficiency of Tandem Thin-Film Solar Cells

    Get PDF
    We report on the prototyping and development of a highly reflective dielectric back reflector for application in thin-film solar cells. The back reflector is fabricated by Snow Globe Coating (SGC), an innovative, simple, and cheap process to deposit a uniform layer of TiO2 particles which shows remarkably high reflectance over a broad spectrum (average reflectance of 99% from 500 nm to 1100 nm). We apply the highly reflective back reflector to tandem thin-film silicon solar cells and compare its performance with conventional ZnO:Al/Ag reflector. By using SGC back reflector, an enhancement of 0.5 mA/cm2 in external quantum efficiency of the bottom solar cell and an absolute value of 0.2% enhancement in overall power conversion efficiency are achieved. We also show that the increase in power conversion efficiency is due to the reduction of parasitic absorption at the back contact; that is, the use of the dielectric reflector avoids plasmonic losses at the reference ZnO:Al/Ag back reflector. The Snow Globe Coating process is compatible with other types of solar cells such as crystalline silicon, III–V, and organic photovoltaics. Due to its cost effectiveness, stability, and excellent reflectivity above a wavelength of 400 nm, it has high potential to be applied in industry

    Optical Properties of Deep Ice at the South Pole - Absorption

    Get PDF
    We discuss recent measurements of the wavelength-dependent absorption coefficients in deep South Pole ice. The method uses transit time distributions of pulses from a variable-frequency laser sent between emitters and receivers embedded in the ice. At depths of 800 to 1000 m scattering is dominated by residual air bubbles, whereas absorption occurs both in ice itself and in insoluble impurities. The absorption coefficient increases approximately exponentially with wavelength in the measured interval 410 to 610 nm. At the shortest wavelength our value is about a factor 20 below previous values obtained for laboratory ice and lake ice; with increasing wavelength the discrepancy with previous measurements decreases. At around 415 to 500 nm the experimental uncertainties are small enough for us to resolve an extrinsic contribution to absorption in ice: submicron dust particles contribute by an amount that increases with depth and corresponds well with the expected increase seen near the Last Glacial Maximum in Vostok and Dome C ice cores. The laser pulse method allows remote mapping of gross structure in dust concentration as a function of depth in glacial ice.Comment: 26 pages, LaTex, Accepted for publication in Applied Optics. 9 figures, not included, available on request from [email protected]

    Pre-hospital CPR and early REBOA in trauma patients-results from the ABOTrauma Registry

    Get PDF
    Publisher Copyright: © 2020 The Author(s).Background: Severely injured trauma patients suffering from traumatic cardiac arrest (TCA) and requiring cardiopulmonary resuscitation (CPR) rarely survive. The role of resuscitative endovascular balloon occlusion of the aorta (REBOA) performed early after hospital admission in patients with TCA is not well-defined. As the use of REBOA increases, there is great interest in knowing if there is a survival benefit related to the early use of REBOA after TCA. Using data from the ABOTrauma Registry, we aimed to study the role of REBOA used early after hospital admission in trauma patients who required pre-hospital CPR. Methods: Retrospective and prospective data on the use of REBOA were collected from the ABOTrauma Registry from 11 centers in seven countries globally between 2014 and 2019. In all patients with pre-hospital TCA, the predicted probability of survival, calculated with the Revised Injury Severity Classification II (RISC II), was compared with the observed survival rate. Results: Of 213 patients in the ABOTrauma Registry, 26 patients (12.2%) who had received pre-hospital CPR were identified. The median (range) Injury Severity Score (ISS) was 45.5 (25-75). Fourteen patients (54%) had been admitted to the hospital with ongoing CPR. Nine patients (35%) died within the first 24 h, while seventeen patients (65%) survived post 24 h. The survival rate to hospital discharge was 27% (n = 7). The predicted mortality using the RISC II was 0.977 (25 out of 26). The observed mortality (19 out of 26) was significantly lower than the predicted mortality (p = 0.049). Patients not responding to REBOA were more likely to die. Only one (10%) out of 10 non-responders survived. The survival rate in the 16 patients responding to REBOA was 37.5% (n = 6). REBOA with a median (range) duration of 45 (8-70) minutes significantly increases blood pressure from the median (range) 56.5 (0-147) to 90 (0-200) mmHg. Conclusions: Mortality in patients suffering from TCA and receiving REBOA early after hospital admission is significantly lower than predicted by the RISC II. REBOA may improve survival after TCA. The use of REBOA in these patients should be further investigated.Peer reviewe

    Search for the lepton-family-number nonconserving decay \mu -> e + \gamma

    Full text link
    The MEGA experiment, which searched for the muon- and electron-number violating decay \mu -> e + \gamma, is described. The spectrometer system, the calibrations, the data taking procedures, the data analysis, and the sensitivity of the experiment are discussed. The most stringent upper limit on the branching ratio of \mu -> e + \gamma) < 1.2 x 10^{-11} was obtained

    The AMANDA Neutrino Telescope and the Indirect Search for Dark Matter

    Get PDF
    With an effective telescope area of order 10^4 m^2, a threshold of ~50 GeV and a pointing accuracy of 2.5 degrees, the AMANDA detector represents the first of a new generation of high energy neutrino telescopes, reaching a scale envisaged over 25 years ago. We describe its performance, focussing on the capability to detect halo dark matter particles via their annihilation into neutrinos.Comment: Latex2.09, 16 pages, uses epsf.sty to place 15 postscript figures. Talk presented at the 3rd International Symposium on Sources and Detection of Dark Matter in the Universe (DM98), Santa Monica, California, Feb. 199

    The AMANDA Neutrino Telescope

    Full text link
    With an effective telescope area of order 10410^4 m2^2 for TeV neutrinos, a threshold near ∌\sim50 GeV and a pointing accuracy of 2.5 degrees per muon track, the AMANDA detector represents the first of a new generation of high energy neutrino telescopes, reaching a scale envisaged over 25 years ago. We describe early results on the calibration of natural deep ice as a particle detector as well as on AMANDA's performance as a neutrino telescope.Comment: 12 pages, Latex2.09, uses espcrc2.sty and epsf.sty, 13 postscript files included. Talk presented at the 18th International Conference on Neutrino Physics and Astrophysics (Neutrino 98), Takayama, Japan, June 199

    Search for Point Sources of High Energy Neutrinos with AMANDA

    Get PDF
    This paper describes the search for astronomical sources of high-energy neutrinos using the AMANDA-B10 detector, an array of 302 photomultiplier tubes, used for the detection of Cherenkov light from upward traveling neutrino-induced muons, buried deep in ice at the South Pole. The absolute pointing accuracy and angular resolution were studied by using coincident events between the AMANDA detector and two independent telescopes on the surface, the GASP air Cherenkov telescope and the SPASE extensive air shower array. Using data collected from April to October of 1997 (130.1 days of livetime), a general survey of the northern hemisphere revealed no statistically significant excess of events from any direction. The sensitivity for a flux of muon neutrinos is based on the effective detection area for through-going muons. Averaged over the Northern sky, the effective detection area exceeds 10,000 m^2 for E_{mu} ~ 10 TeV. Neutrinos generated in the atmosphere by cosmic ray interactions were used to verify the predicted performance of the detector. For a source with a differential energy spectrum proportional to E_{nu}^{-2} and declination larger than +40 degrees, we obtain E^2(dN_{nu}/dE) <= 10^{-6}GeVcm^{-2}s^{-1} for an energy threshold of 10 GeV.Comment: 46 pages, 22 figures, 4 tables, submitted to Ap.

    The AMANDA Neutrino Telescope: Principle of Operation and First Results

    Get PDF
    AMANDA is a high-energy neutrino telescope presently under construction at the geographical South Pole. In the Antarctic summer 1995/96, an array of 80 optical modules (OMs) arranged on 4 strings (AMANDA-B4) was deployed at depths between 1.5 and 2 km. In this paper we describe the design and performance of the AMANDA-B4 prototype, based on data collected between February and November 1996. Monte Carlo simulations of the detector response to down-going atmospheric muon tracks show that the global behavior of the detector is understood. We describe the data analysis method and present first results on atmospheric muon reconstruction and separation of neutrino candidates. The AMANDA array was upgraded with 216 OMs on 6 new strings in 1996/97 (AMANDA-B10), and 122 additional OMs on 3 strings in 1997/98.Comment: 36 pages, 23 figures, submitted to Astroparticle Physic

    Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector

    Full text link
    Data from the AMANDA-B10 detector taken during the austral winter of 1997 have been searched for a diffuse flux of high energy extraterrestrial muon-neutrinos, as predicted from, e.g., the sum of all active galaxies in the universe. This search yielded no excess events above those expected from the background atmospheric neutrinos, leading to upper limits on the extraterrestrial neutrino flux. For an assumed E^-2 spectrum, a 90% classical confidence level upper limit has been placed at a level E^2 Phi(E) = 8.4 x 10^-7 GeV cm^-2 s^-1 sr^-1 (for a predominant neutrino energy range 6-1000 TeV) which is the most restrictive bound placed by any neutrino detector. When specific predicted spectral forms are considered, it is found that some are excluded.Comment: Submitted to Physical Review Letter
    • 

    corecore