1,122 research outputs found

    Light therapy for seasonal affective disorder with blue narrow-band light-emitting diodes (LEDs)

    Get PDF
    Background: While light has proven an effective treatment for Seasonal Affective Disorder (SAD), an optimal wavelength combination has not been determined. Short wavelength light (blue) has demonstrated potency as a stimulus for acute melatonin suppression and circadian phase shifting. Methods: This study tested the efficacy of short wavelength light therapy for SAD. Blue light emitting diode (LED) units produced 468 nm light at 607 µW/cm2 (27 nm half-peak bandwidth); dim red LED units provided 654 nm at 34 µW/cm2 (21 nm half-peak bandwidth). Patients with major depression with a seasonal pattern, a score of ≥20 on the Structured Interview Guide for the Hamilton Depression Rating Scale-SAD version (SIGH-SAD) and normal sleeping patterns (routine bedtimes between 10:00 pm and midnight) received 45 minutes of morning light treatment daily for 3 weeks. Twenty-four patients completed treatment following random assignment of condition (blue vs. red light). The SIGH-SAD was administered weekly. Results: Mixed-effects analyses of covariance determined that the short wavelength light treatment decreased SIGH-SAD scores significantly more than the dimmer red light condition (F = 6.45, p = .019 for average over the post-treatment times). Conclusions: Narrow bandwidth blue light at 607 µW/cm2 outperforms dimmer red light in reversing symptoms of major depression with a seasonal pattern

    Randomized trial of polychromatic blue-enriched light for circadian phase shifting, melatonin suppression, and alerting responses.

    Get PDF
    Wavelength comparisons have indicated that circadian phase-shifting and enhancement of subjective and EEG-correlates of alertness have a higher sensitivity to short wavelength visible light. The aim of the current study was to test whether polychromatic light enriched in the blue portion of the spectrum (17,000 K) has increased efficacy for melatonin suppression, circadian phase-shifting, and alertness as compared to an equal photon density exposure to a standard white polychromatic light (4000 K). Twenty healthy participants were studied in a time-free environment for 7 days. The protocol included two baseline days followed by a 26-h constant routine (CR1) to assess initial circadian phase. Following CR1, participants were exposed to a full-field fluorescent light (1 × 10 14 photons/cm 2 /s, 4000 K or 17,000 K, n = 10/condition) for 6.5 h during the biological night. Following an 8 h recovery sleep, a second 30-h CR was performed. Melatonin suppression was assessed from the difference during the light exposure and the corresponding clock time 24 h earlier during CR1. Phase-shifts were calculated from the clock time difference in dim light melatonin onset time (DLMO) between CR1 and CR2. Blue-enriched light caused significantly greater suppression of melatonin than standard light ((mean ± SD) 70.9 ± 19.6% and 42.8 ± 29.1%, respectively, p \u3c 0.05). There was no significant difference in the magnitude of phase delay shifts. Blue-enriched light significantly improved subjective alertness (p \u3c 0.05) but no differences were found for objective alertness. These data contribute to the optimization of the short wavelength-enriched spectra and intensities needed for circadian, neuroendocrine and neurobehavioral regulation

    Adverse health effects of nighttime lighting: comments on american medical association policy statement.

    Get PDF
    The American Medical Association House of Delegates in June of 2012 adopted a policy statement on nighttime lighting and human health. This major policy statement summarizes the scientific evidence that nighttime electric light can disrupt circadian rhythms in humans and documents the rapidly advancing understanding from basic science of how disruption of circadian rhythmicity affects aspects of physiology with direct links to human health, such as cell cycle regulation, DNA damage response, and metabolism. The human evidence is also accumulating, with the strongest epidemiologic support for a link of circadian disruption from light at night to breast cancer. There are practical implications of the basic and epidemiologic science in the form of advancing lighting technologies that better accommodate human circadian rhythmicity

    Lighting Effects

    Get PDF
    No abstract availabl

    A rheological mechanism of penetrative wear

    Full text link
    A model is proposed which explains the penetrative wear of a soft material by a harder one. Three distinct modes of penetration are present depending on the applied load. During the most severe penetration plate-like wear debris is ejected at the leading edge of the slider. A series of slip line fields is presented to approximate this debris formation process. Plastic constraint is seen to be an important factor in wear particle formation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/22217/1/0000650.pd

    Coral macrobioerosion is accelerated by ocean acidification and nutrients

    Get PDF
    Author Posting. © The Author(s), 2014]. This is the author's version of the work. It is posted here by permission of Geological Society of America for personal use, not for redistribution. The definitive version was published in Geology 43 (2015): 7-10, doi: 10.1130/G36147.1.Coral reefs exist in a delicate balance between calcium carbonate (CaCO3) production and CaCO3 loss. Ocean acidification (OA), the CO2-driven decline in seawater pH and CaCO3 saturation state (Ω), threatens to tip this balance by decreasing calcification, and increasing erosion and dissolution. While multiple CO2 manipulation experiments show coral calcification declines under OA, the sensitivity of bioerosion to OA is less well understood. Previous work suggests that coral and coral reef bioerosion increase with decreasing seawater Ω. However, in the surface ocean, Ω and nutrient concentrations often covary, making their relative influence difficult to resolve. Here, we exploit unique natural gradients in Ω and nutrients across the Pacific basin to quantify the impact of these factors, together and independently, on macrobioerosion rates of coral skeletons. Using an automated program to quantify macrobioerosion in 3-D computerized tomography (CT) scans of coral cores, we show that macrobioerosion rates of live Porites colonies in both low-nutrient (oligotrophic) and high-nutrient (>1 µM nitrate) waters increase significantly as Ω decreases. However, the sensitivity of macrobioerosion to Ω is ten times greater under high-nutrient conditions. Our results demonstrate that OA (decreased Ω) alone can increase coral macrobioerosion rates, but the interaction of OA with local stressors exacerbates its impact, accelerating a shift toward net CaCO3 removal from coral reefs.This work was supported by NSF OCE 1041106 to A.L.C. and K.E.S., NSF OCE 1220529 to A.L.C., TNC award PNA/WHOI061810 to A.L.C., NSF Graduate Research Fellowships to T.M.D. and H.C.B., and a WHOI-OLI post-doctoral fellowship to K.E.S.2015-11-1

    Gender Differences in Head Impacts Sustained by Collegiate Ice Hockey Players

    Get PDF
    Purpose—This study aims to quantify the frequency, magnitude, and location of head impacts sustained by male and female collegiate ice hockey players over two seasons of play. Methods—Over two seasons, 88 collegiate athletes (51 female, 37 male) on two female and male NCAA varsity ice hockey teams wore instrumented helmets. Each helmet was equipped with 6 single-axis accelerometers and a miniature data acquisition system to capture and record head impacts sustained during play. Data collected from the helmets were post-processed to compute linear and rotational acceleration of the head as well as impact location. The head impact exposure data (frequency, location, and magnitude) were then compared across gender. Results—Female hockey players experienced a significantly lower (p \u3c 0.001) number of impacts per athlete exposure than males (female: 1.7 ± 0.7; male: 2.9 ± 1.2). The frequency of impacts by location was the same between gender (p \u3e 0.278) for all locations except the right side of the head, where males received fewer impacts than females (p = 0.031). Female hockey players were 1.1 times more likely than males to sustain an impact less than 50 g while males were 1.3 times more likely to sustain an impact greater than 100 g. Similarly, males were 1.9 times more likely to sustain an impact with peak rotational acceleration greater than 5,000 rad/s2 and 3.5 times more likely to sustain an impact greater than 10,000 rad/s2. Conclusions—Although the incidence of concussion has typically been higher for female hockey players than male hockey players, female players sustain fewer impacts and impacts resulting in lower head acceleration than males. Further study is required to better understand th

    Selective binding of facial features reveals dynamic expression fragments

    Get PDF
    The temporal correspondence between two arbitrarily chosen pairs of alternating features can generally be reported for rates up to 3–4 Hz. This limit is however surpassed for specialised visual mechanisms that encode conjunctions of features. Here we show that this 3–4 Hz limit is exceeded for eye gaze and eyebrow pairing, but not for eye gaze and mouth pairing, suggesting combined eye and eyebrow motion constitutes a dynamic expression fragment; a building block of superordinate facial actions

    Temporal perception deficits in schizophrenia: integration is the problem, not deployment of attentions

    Get PDF
    Patients with schizophrenia are known to have impairments in sensory processing. In order to understand the specific temporal perception deficits of schizophrenia, we investigated and determined to what extent impairments in temporal integration can be dissociated from attention deployment using Attentional Blink (AB). Our findings showed that there was no evident deficit in the deployment of attention in patients with schizophrenia. However, patients showed an increased temporal integration deficit within a hundred-millisecond timescale. The degree of such integration dysfunction was correlated with the clinical manifestations of schizophrenia. There was no difference between individuals with/without schizotypal personality disorder in temporal integration. Differently from previous studies using the AB, we did not find a significant impairment in deployment of attention in schizophrenia. Instead, we used both theoretical and empirical approaches to show that previous findings (using the suppression ratio to correct for the baseline difference) produced a systematic exaggeration of the attention deficits. Instead, we modulated the perceptual difficulty of the task to bring the baseline levels of target detection between the groups into closer alignment. We found that the integration dysfunction rather than deployment of attention is clinically relevant, and thus should be an additional focus of research in schizophrenia
    corecore