74 research outputs found

    Lateral Gene Transfer (LGT) between Archaea and Escherichia coli is a contributor to the emergence of novel infectious disease

    Get PDF
    BACKGROUND: Lateral gene transfer is the major mechanism for acquisition of new virulence genes in pathogens. Recent whole genome analyses have suggested massive gene transfer between widely divergent organisms. PRESENTATION OF THE HYPOTHESIS: Archeal-like genes acting as virulence genes are present in several pathogens and genomes contain a number of archaeal-like genes of unknown function. Archaea, by virtue of their very different evolutionary history and different environment, provide a pool of potential virulence genes to bacterial pathogens. TESTING THE HYPOTHESIS: We can test this hypothesis by 1)identifying genes likely to have been transferred (directly or indirectly) to E. coli O157:H7 from archaea; 2)investigating the distribution of similar genes in pathogens and non-pathogens and 3)performing rigorous phylogenetic analyses on putative transfers. IMPLICATIONS OF THE HYPOTHESIS: Although this hypothesis focuses on archaea and E. coli, it will serve as a model having broad applicability to a number of pathogenic systems. Since no archaea are known vertebrate pathogens, archaeal-like transferred genes that are associated with virulence in bacteria represent a clear model for the emergence of virulence genes

    All blood, No stool: enterohemorrhagic Escherichia coli O157:H7 infection

    Get PDF
    Enterohemorrhagic Escherichia coli serotype O157:H7 is a pathotype of diarrheagenic E. coli that produces one or more Shiga toxins, forms a characteristic histopathology described as attaching and effacing lesions, and possesses the large virulence plasmid pO157. The bacterium is recognized worldwide, especially in developed countries, as an emerging food-borne bacterial pathogen, which causes disease in humans and in some animals. Healthy cattle are the principal and natural reservoir of E. coli O157:H7, and most disease outbreaks are, therefore, due to consumption of fecally contaminated bovine foods or dairy products. In this review, we provide a general overview of E. coli O157:H7 infection, especially focusing on the bacterial characteristics rather than on the host responses during infection

    Identifying Mechanisms by Which Escherichia coli O157:H7 Subverts Interferon-γ Mediated Signal Transducer and Activator of Transcription-1 Activation

    Get PDF
    Enterohemorrhagic Escherichia coli serotype O157:H7 is a food borne enteric bacterial pathogen that causes significant morbidity and mortality in both developing and industrialized nations. E. coli O157:H7 infection of host epithelial cells inhibits the interferon gamma pro-inflammatory signaling pathway, which is important for host defense against microbial pathogens, through the inhibition of Stat-1 tyrosine phosphorylation. The aim of this study was to determine which bacterial factors are involved in the inhibition of Stat-1 tyrosine phosphorylation. Human epithelial cells were challenged with either live bacteria or bacterial-derived culture supernatants, stimulated with interferon-gamma, and epithelial cell protein extracts were then analyzed by immunoblotting. The results show that Stat-1 tyrosine phosphorylation was inhibited by E. coli O157:H7 secreted proteins. Using sequential anion exchange and size exclusion chromatography, YodA was identified, but not confirmed to mediate subversion of the Stat-1 signaling pathway using isogenic mutants. We conclude that E. coli O157:H7 subverts Stat-1 tyrosine phosphorylation in response to interferon-gamma through a still as yet unidentified secreted bacterial protein

    Similarity of Fibroglandular Breast Tissue Content Measured from Magnetic Resonance and Mammographic Images and by a Mathematical Algorithm

    Get PDF
    Women with high breast density (BD) have a 4- to 6-fold greater risk for breast cancer than women with low BD. We found that BD can be easily computed from a mathematical algorithm using routine mammographic imaging data or by a curve-fitting algorithm using fat and nonfat suppression magnetic resonance imaging (MRI) data. These BD measures in a strictly defined group of premenopausal women providing both mammographic and breast MRI images were predicted as well by the same set of strong predictor variables as were measures from a published laborious histogram segmentation method and a full field digital mammographic unit in multivariate regression models. We also found that the number of completed pregnancies, C-reactive protein, aspartate aminotransferase, and progesterone were more strongly associated with amounts of glandular tissue than adipose tissue, while fat body mass, alanine aminotransferase, and insulin like growth factor-II appear to be more associated with the amount of breast adipose tissue. Our results show that methods of breast imaging and modalities for estimating the amount of glandular tissue have no effects on the strength of these predictors of BD. Thus, the more convenient mathematical algorithm and the safer MRI protocols may facilitate prospective measurements of BD
    • …
    corecore