104 research outputs found

    Magnetocaloric effect of monovalent K doped manganites Pr0.6Sr0.4−xKxMnO3 (x=0 to 0.2)

    Full text link
    peer reviewedMagnetic and magnetocaloric properties are reported for polycrystalline monovalent potassium doped manganites Pr0.6Sr0.4−xKxMnO3 (x=0, 0.05, 0.1, 0.15 and 0.2) crystallized in orthorhombic structure with Pnma space group. The increasing K content shifts the paramagnetic to ferromagnetic transition temperature from 310 K for x=0 to 269 K for x=0.2. The magnetic entropy change under magnetic field variation of 2 T is found to be 1.95, 3.09, 2.89, 3.05 and 3.2 J/kgK for x varying from 0 to 0.2, respectively. The highest relative cooling power of 102 J/kg is observed for the undoped sample. The sensitivity of magnetic entropy change to magnetic field is estimated by a local N(T) exponent exhibiting the characteristic temperature variation. Phenomenological universal curves of entropy change and Arrott plots confirm the second order phase transition

    STRUCTURAL AND MAGNETIC STUDY OF PEROVSKITE MANGANITES OXIDES Pr 1-x x MnO 3

    Get PDF
    Abstract Structural and magnetic properties in a self doped Pr 1-x x MnO 3 system are investigated. X-ray diffraction patterns show that samples with composition range 0.0-0.3 crystallize in orthorhombic perovskite structure with Pbnm space group. Our samples exhibit an antiferromagnetic behavior at low temperature. The temperature ordering as a function of the vacancy content remains constant, however the magnetization magnitude at low temperature (T = 10 K) increases with increasing deficiency content

    From community approaches to single-cell genomics: the discovery of ubiquitous hyperhalophilic Bacteroidetes generalists

    Get PDF
    The microbiota of multi-pond solar salterns around the world has been analyzed using a variety of culture-dependent and molecular techniques. However, studies addressing the dynamic nature of these systems are very scarce. Here we have characterized the temporal variation during 1 year of the microbiota of five ponds with increasing salinity (from 18% to >40%), by means of CARD-FISH and DGGE. Microbial community structure was statistically correlated with several environmental parameters, including ionic composition and meteorological factors, indicating that the microbial community was dynamic as specific phylotypes appeared only at certain times of the year. In addition to total salinity, microbial composition was strongly influenced by temperature and specific ionic composition. Remarkably, DGGE analyses unveiled the presence of most phylotypes previously detected in hypersaline systems using metagenomics and other molecular techniques, such as the very abundant Haloquadratum and Salinibacter representatives or the recently described low GC Actinobacteria and Nanohaloarchaeota. In addition, an uncultured group of Bacteroidetes was present along the whole range of salinity. Database searches indicated a previously unrecognized widespread distribution of this phylotype. Single-cell genome analysis of five members of this group suggested a set of metabolic characteristics that could provide competitive advantages in hypersaline environments, such as polymer degradation capabilities, the presence of retinal-binding light-activated proton pumps and arsenate reduction potential. In addition, the fairly high metagenomic fragment recruitment obtained for these single cells in both the intermediate and hypersaline ponds further confirm the DGGE data and point to the generalist lifestyle of this new Bacteroidetes group.This work was supported by the projects CGL2012-39627-C03-01 and 02 of the Spanish Ministry of Economy and Competitiveness, which were also co-financed with FEDER support from the European Union. TG group research is funded in part by a grant from the Spanish Ministry of Economy and Competitiveness (BIO2012-37161), a grant from the Qatar National Research Fund grant (NPRP 5-298-3-086) and a grant from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC (grant agreement no. ERC-2012-StG-310325)

    Još o toksičnosti kadmija - s posebnim osvrtom na nastanak oksidacijskoga stresa i na interakcije s cinkom i magnezijem

    Get PDF
    Discovered in late 1817, cadmium is currently one of the most important occupational and environmental pollutants. It is associated with renal, neurological, skeletal and other toxic effects, including reproductive toxicity, genotoxicity, and carcinogenicity. There is still much to find out about its mechanisms of action, biomarkers of critical effects, and ways to reduce health risks. At present, there is no clinically efficient agent to treat cadmium poisoning due to predominantly intracellular location of cadmium ions. This article gives a brief review of cadmium-induced oxidative stress and its interactions with essential elements zinc and magnesium as relevant mechanisms of cadmium toxicity. It draws on available literature data and our own results, which indicate that dietary supplementation of either essential element has beneficial effect under condition of cadmium exposure. We have also tackled the reasons why magnesium addition prevails over zinc and discussed the protective role of magnesium during cadmium exposure. These findings could help to solve the problem of prophylaxis and therapy of increased cadmium body burden.Iako je otkriven tek 1817. godine, kadmij je trenutačno jedan od najvažnijih onečišćivača životne i radne sredine. Štetno djeluje na bubrege, živčani sustav, kosti, reproduktivni sistem, a ima i genotoksične i karcinogene efekte. Nužna su dalja istraživanja vezana za mehanizme njegove toksičnosti, biomarkere efekata, kao i načine smanjenja rizika za zdravlje. Osim toga, do danas nije otkriven agens efikasan u terapiji trovanja kadmijem s obzirom na to da je kadmij intracelularni kation. U ovom radu dan je sažet pregled važnih mehanizama toksičnosti kadmija, kao što su nastanak oksidativnog stresa i interakcije s esencijalnim elementima, cinkom i magnezijem, na osnovi dostupnih literaturnih podataka, kao i naših ispitivanja koja upućuju na to da povećani unos navedenih esencijalnih elemenata pokazuje pozitivne efekte pri ekspoziciji kadmiju. Obrazložena je prednost suplementacije magnezijem pred suplementacijom cinkom i razmatrana preventivna uloga magnezija pri intoksikaciji kadmijem. Ovi su rezultati doprinos rješavanju problema profi lakse i terapije trovanja kadmijem

    Europium substitution effects on structural, magnetic and magnetocaloric properties in La 0.5

    No full text
    We have investigated structural, magnetic and magnetocaloric properties of polycrystalline samples La0.5-xEuxCa0.5MnO3 (x=0 and 0.1). Rietveld refinement of the X-ray diffraction patterns show that our samples are single phase and crystallize in the orthorhombic structure with Pnma space group. Magnetization measurements versus temperature at a magnetic applied field of 500 Oe indicate that La0.4Eu0.1Ca0.5MnO3 sample exhibits a paramagnetic to ferromagnetic transition with decreasing temperature. Magnetic measurements reveal strong magnetocaloric effect in the vicinity of the Curie temperature TC. The parent compound shows a negative magnetic entropy change of ∆SM=−1.13Jkg−1K−1 at 220K and a positive magnetocaloric effects ∆SM=1Jkg−1K−1 at 150K under a magnetic applied field of 2T. La0.4Eu0.1Ca0.5MnO3 exhibits a maximum value of magnetic entropy change ∆SM=−1.15Jkg−1K−1 at 130K under an applied field of 2T and a large relative cooling power RCP with a maximum value of 72 J/kg
    corecore