91,215 research outputs found

    Lattice QCD Calculations of Hadron Structure: Constituent Quarks and Chiral Symmetry

    Get PDF
    New data from parity-violating experiments on the deuteron now allow isolation of the strange-quark contribution to the nucleon magnetic moment, G_M^s(0), without the uncertainty surrounding the anapole moment of the nucleon. Still, best estimates place G_M^s(0) > 0. It is illustrated how this experimental result challenges the very cornerstone of the constituent quark model. The chiral physics giving rise to G_M^s(0) \sim 0 is illustrated.Comment: Invited talk presented by DBL at the 16th Int. Conf. on Few Body Problems (Taipei, March 6-10, 2000); 9 pages, 5 figure

    Proton Decay Constraints on Low Scale AdS/CFT Unification

    Full text link
    Dark matter candidates and proton decay in a class of models based on the AdS/CFT correspondence are discussed. We show that the present bound on the proton decay lifetime is inconsistent with N=1{\cal N} = 1 SUSY, and strongly constrains N=0{\cal N} = 0 non-SUSY, low scale trinification type unification of orbifolded AdS⊗S5\otimes S^5 models.Comment: 10 page

    The First Moments of Nucleon Generalized Parton Distributions

    Get PDF
    We extrapolate the first moments of the generalized parton distributions using heavy baryon chiral perturbation theory. The calculation is based on the one loop level with the finite range regularization. The description of the lattice data is satisfactory and the extrapolated moments at physical pion mass are consistent with the results obtained with dimensional regularization, although the extrapolation in the momentum transfer to t=0t=0 does show sensitivity to form factor effects which lie outside the realm of chiral perturbation theory. We discuss the significance of the results in the light of modern experiments as well as QCD inspired models.Comment: 14 pages, 9 figure

    Unified chiral analysis of the vector meson spectrum from lattice QCD

    Full text link
    The chiral extrapolation of the vector meson mass calculated in partially-quenched lattice simulations is investigated. The leading one-loop corrections to the vector meson mass are derived for partially-quenched QCD. A large sample of lattice results from the CP-PACS Collaboration is analysed, with explicit corrections for finite lattice spacing artifacts. To incorporate the effect of the opening decay channel as the chiral limit is approached, the extrapolation is studied using a necessary phenomenological extension of chiral effective field theory. This chiral analysis also provides a quantitative estimate of the leading finite volume corrections. It is found that the discretisation, finite-volume and partial quenching effects can all be very well described in this framework, producing an extrapolated value of M_\rho in excellent agreement with experiment. This procedure is also compared with extrapolations based on polynomial forms, where the results are much less enlightening.Comment: 30 pages, 13 fig

    The No-Boundary Measure of the Universe

    Full text link
    We consider the no-boundary proposal for homogeneous isotropic closed universes with a cosmological constant and a scalar field with a quadratic potential. In the semi-classical limit, it predicts classical behavior at late times if the initial scalar field is more than a certain minimum. If the classical late time histories are extended back, they may be singular or bounce at a finite radius. The no-boundary proposal provides a probability measure on the classical solutions which selects inflationary histories but is heavily biased towards small amounts of inflation. This would not be compatible with observations. However we argue that the probability for a homogeneous universe should be multiplied by exp(3N) where N is the number of e-foldings of slow roll inflation to obtain the probability for what we observe in our past light cone. This volume weighting is similar to that in eternal inflation. In a landscape potential, it would predict that the universe would have a large amount of inflation and that it would start in an approximately de Sitter state near a saddle-point of the potential. The universe would then have always been in the semi-classical regime.Comment: 4 pages, revtex4, minor corrections to accord with published versio

    Physical Baryon Resonance Spectroscopy from Lattice QCD

    Get PDF
    We complement recent advances in the calculation of the masses of excited baryons in quenched lattice QCD with finite-range regulated chiral effective field theory enabling contact with the physical quark mass region. We examine the P-wave contributions to the low-lying nucleon and delta resonances.Comment: Contributed paper at FB17, the 17th International Conference on Few-Body Problems in Physics, Durham, NC, June 5-10, 2003. 3 pages, 6 figure

    A Schottky/2-DEG varactor diode for millimeter and submillimeter wave multiplier applications

    Get PDF
    A new Schottky diode is investigated for use as a multiplier element in the millimeter and submillimeter wavelength regions. The new diode is based on the Schottky contact at the edge of a 2-dimensional electron gas (2-DEG). As a negative voltage is applied to the Schottky contact, the depletion layer between the Schottky contact and the 2-DEG expands and the junction capacitance decreases, resulting in a nonlinear capacitance-voltage characteristic. In this paper, we outline the theory, design, fabrication, and evaluation of the new device. Recent results include devices having cutoff frequencies of 1 THz and above. Preliminary multiplier results are also presented
    • …
    corecore