1,081 research outputs found

    Nitrous oxide in coastal waters

    Get PDF
    We determined atmospheric and dissolved nitrous oxide (N2O) in the surface waters of the central North Sea, the German Bight, and the Gironde estuary. The mean saturations were 104 ± 1% (central North Sea, September 1991), 101 ± 2% (German Bight, September 1991), 99 ± 1% (German Bight September 1992), and 132% (Gironde estuary, November 1991). To evaluate the contribution of coastal areas and estuaries to the oceanic emissions we assembled a compilation of literature data. We conclude that the mean saturations in coastal regions (with the exception of estuaries and regions with upwelling phenomena) are only slightly higher than in the open ocean. However, when estuarine and coastal upwelling regions are included, a computation of the global oceanic N2O flux indicates that a considerable portion (approximately 60%) of this flux is from coastal regions, mainly due to high emissions from estuaries. We estimate, using two different parameterizations of the air-sea exchange process, an annual global sea-to-air flux of 11–17 Tg N2O. Our results suggest a serious underestimation of the flux from coastal regions in widely used previous estimates

    Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions

    Get PDF
    Biogenic aerosols play important roles in atmospheric chemistry physics, the biosphere, climate, and public health. Here, we show that fungi which actively discharge their spores with liquids into the air, in particular actively wet spore discharging Ascomycota (AAM) and actively wet spore discharging Basidiomycota (ABM), are a major source of primary biogenic aerosol particles and components. We present the first estimates for the global average emission rates of fungal spores. Measurement results and budget calculations based on investigations in Amazonia (Balbina, Brazil, July 2001) indicate that the spores of AAM and ABM may account for a large proportion of coarse particulate matter in tropical rainforest regions during the wet season (0.7–2.3 μg m^−3). For the particle diameter range of 1–10 μm, the estimated proportions are ~25% during day-time, ~45% at night, and ~35% on average. For the sugar alcohol mannitol, the budget calculations indicate that it is suitable for use as a molecular tracer for actively wet discharged basidiospores (ABS). ABM emissions seem to account for most of the atmospheric abundance of mannitol (10–68 ng m^−3), and can explain the observed diurnal cycle (higher abundance at night). ABM emissions of hexose carbohydrates might also account for a significant proportion of glucose and fructose in air particulate matter (7–49 ng m^−3), but the literature-derived ratios are not consistent with the observed diurnal cycle (lower abundance at night). AAM emissions appear to account for a large proportion of potassium in air particulate matter over tropical rainforest regions during the wet season (17–43 ng m^−3), and they can also explain the observed diurnal cycle (higher abundance at night). The results of our investigations and budget calculations for tropical rainforest aerosols are consistent with measurements performed at other locations. Based on the average abundance of mannitol reported for extratropical continental boundary layer air (~25 ng m^−3), we have also calculated a value of ~17 Tg yr^−1 as a first estimate for the global average emission rate of ABS over land surfaces, which is consistent with the typically observed concentrations of ABS (~10³–10^4 m^−3; ~0.1–1 μg m^−3). The global average atmospheric abundance and emission rate of total fungal spores, including wet and dry discharged species, are estimated to be higher by a factor of about three, i.e. 1 μg m^−3 and ~50 Tg yr^−1. Comparisons with estimated rates of emission and formation of other major types of organic aerosol (~47 Tg yr^−1 of anthropogenic primary organic aerosol; 12–70 Tg yr^−1 of secondary organic aerosol) indicate that emissions from fungi should be taken into account as a significant global source of organic aerosol. The effects of fungal spores and related chemical components might be particularly important in tropical regions, where both physicochemical processes in the atmosphere and biological activity at the Earth's surface are particularly intense, and where the abundance of fungal spores and related chemical compounds are typically higher than in extratropical regions

    Nitrous oxide in the deep waters of the world's oceans

    Get PDF
    We present a compilation and analysis Of N2O data from the deep-water zone of the oceans below 2000 m. The N2O values show an increasing trend from low concentrations in the North Atlantic Ocean to high concentrations in the North Pacific Ocean, indicating an accumulation of N2O in deep waters with time. We conclude that the observed N2O accumulation is mainly caused by nitrification in the global deep-water circulation system (i.e., the “conveyor belt”). Hydrothermal and sedimentary N2O fluxes are negligible. We estimate the annual N2O deep-water production to be 0.3 ± 0.1 Tg. Despite the fact that the deep sea below 2000 m represents about 95% of the total ocean volume, it contributes only about 3–16% to the global open-ocean N2O production. A rough estimate of the oceanic N2O budget suggests that the loss to the atmosphere is not balanced by the deep-sea nitrification and pelagic denitrification. Therefore an additional source of 3.8 Tg N2O yr−1 attributed to nitrification in the upper water column (0–2000 m) might exist. With a simple model we estimated the effect of changes in the North Atlantic Deep Water (NADW) formation for deep-water N2O. The upper water N2O budget is not significantly influenced by variations in the N2O deep-water formation. However, the predicted decrease in the NADW formation rate in the near future might lead to an additional source of atmospheric N2O in the range of about 0.02-0.4 Tg yr−1. This (anthropogenically induced) source is small, and it will be difficult to detect its signal against the natural variations in the annual growth rates of tropospheric N2O

    Nitrous oxide emissions from the Arabian Sea

    Get PDF
    Dissolved and atmospheric nitrous oxide (N2O) were measured on the legs 3 and 5 of the R/V Meteor cruise 32 in the Arabian Sea. A cruise track along 65°E was followed during both the intermonsoon (May 1995) and the southwest (SW) monsoon (July/August 1995) periods. During the second leg the coastal and open ocean upwelling regions off the Arabian Peninsula were also investigated. Mean N2O saturations for the oceanic regions of the Arabian Sea were in the range of 99–103% during the intermonsoon and 103–230% during the SW monsoon. Computed annual emissions of 0.8–1.5 Tg N2O for the Arabian Sea are considerably higher than previous estimates, indicating that the role of upwelling regions, such as the Arabian Sea, may be more important than previously assumed in global budgets of oceanic N2O emissions

    Hydrogen Sulfide and Radon in and Over the Western North Atlantic Ocean

    Get PDF
    Atmospheric measurements of radon and hydrogen sulfide, and seawater measurements of total sulfide, free sulfide, and carbonyl sulfide, were made on a cruise in the western North Atlantic Ocean (October 24 to November 9, 1989). Measured values for 222Rn ranged from 3 to 70 pCi m−3, those for atmospheric hydrogen sulfide from 1 to 85 parts per trillion, and those for dissolved total and free sulfide in seawater from 33 to 930 pmol L−1 and 0 to 73 pmol L−1, respectively. A positive correlation between 222Rn and atmospheric H2S was observed. Both 222Rn and H2S were high in air masses traced back to North America. Measurements in seawater showed that uncomplexed sulfides were approximately 13% of total sulfide at 2 m depth. Atmospheric H2S and dissolved H2S in seawater were usually not far from saturation equilibrium. Our results indicate that the ocean acted at some times as a source of atmospheric H2S but more frequently as a sink. Hydrolysis of COS and atmospheric deposition of H2S both may contribute to the budget of dissolved sulfide in seawater of the western North Atlantic Ocean. On a global scale the ocean/atmosphere exchange of H2S appears to play a minor role in the atmospheric sulfur cycle

    The Aegean Sea as a source of atmospheric nitrous oxide and methane

    Get PDF
    During the EGAMES (Evasion of GAses from the MEditerranean Sea) expedition in July 1993 we determined the concentrations of nitrous oxide and methane in the atmosphere and in the surface waters of the Aegean Sea, the northwestern Levantine Basin, the eastern Ionian Sea and the Amvrakikos Bay. Both gases were found to be supersaturated in all sampled areas. Nitrous oxide was homogeneously distributed with a mean saturation of 105 ± 2%, showing no differences between shelf and open ocean areas, whereas methane saturation values ranged from about 1.2 times (northwestern Levantine Basin) to more than 5 times solubility equilibrium (Amvrakikos Bay estuary). Therefore the Aegean Sea and the adjacent areas were sources of atmospheric nitrous oxide and methane during the study period

    Greenhouse gases in cold water filaments in the Arabian Sea during the Southwest Monsoon

    Get PDF
    The distribution of partial pressure of carbon dioxide and the concentrations of nitrous oxide and methane were investigated in a cold water filament near the coastal upwelling region off Oman at the beginning of the southwest monsoon in 1997. The results suggest that such filaments are regions of intense biogeochemical activity which may affect the marine cycling of climatically relevant trace gase

    Nitrous oxide emissions from the Arabian Sea: A synthesis

    Get PDF
    We computed high-resolution (1º latitude x 1º longitude) seasonal and annual nitrous oxide (N2O) concentration fields for the Arabian Sea surface layer using a database containing more than 2400 values measured between December 1977 and July 1997. N2O concentrations are highest during the southwest (SW) monsoon along the southern Indian continental shelf. Annual emissions range from 0.33 to 0.70 Tg N2O and are dominated by fluxes from coastal regions during the SW and northeast monsoons. Our revised estimate for the annual N2O flux from the Arabian Sea is much more tightly constrained than the previous consensus derived using averaged in-situ data from a smaller number of studies. However, the tendency to focus on measurements in locally restricted features in combination with insufficient seasonal data coverage leads to considerable uncertainties of the concentration fields and thus in the flux estimates, especially in the coastal zones of the northern and eastern Arabian Sea. The overall mean relative error of the annual N2O emissions from the Arabian Sea was estimated to be at least 65%
    corecore