21 research outputs found

    Neural dynamics of selective attention to speech in noise

    Get PDF
    This thesis investigates how the neural system instantiates selective attention to speech in challenging acoustic conditions, such as spectral degradation and the presence of background noise. Four studies using behavioural measures, magneto- and electroencephalography (M/EEG) recordings were conducted in younger (20–30 years) and older participants (60–80 years). The overall results can be summarized as follows. An EEG experiment demonstrated that slow negative potentials reflect participants’ enhanced allocation of attention when they are faced with more degraded acoustics. This basic mechanism of attention allocation was preserved at an older age. A follow-up experiment in younger listeners indicated that attention allocation can be further enhanced in a context of increased task-relevance through monetary incentives. A subsequent study focused on brain oscillatory dynamics in a demanding speech comprehension task. The power of neural alpha oscillations (~10 Hz) reflected a decrease in demands on attention with increasing acoustic detail and critically also with increasing predictiveness of the upcoming speech content. Older listeners’ behavioural responses and alpha power dynamics were stronger affected by acoustic detail compared with younger listeners, indicating that selective attention at an older age is particularly dependent on the sensory input signal. An additional analysis of listeners’ neural phase-locking to the temporal envelopes of attended speech and unattended background speech revealed that younger and older listeners show a similar segregation of attended and unattended speech on a neural level. A dichotic listening experiment in the MEG aimed at investigating how neural alpha oscillations support selective attention to speech. Lateralized alpha power modulations in parietal and auditory cortex regions predicted listeners’ focus of attention (i.e., left vs right). This suggests that alpha oscillations implement an attentional filter mechanism to enhance the signal and to suppress noise. A final behavioural study asked whether acoustic and semantic aspects of task-irrelevant speech determine how much it interferes with attention to task-relevant speech. Results demonstrated that younger and older adults were more distracted when acoustic detail of irrelevant speech was enhanced, whereas predictiveness of irrelevant speech had no effect. All findings of this thesis are integrated in an initial framework for the role of attention for speech comprehension under demanding acoustic conditions

    Acoustic Detail But Not Predictability of Task-Irrelevant Speech Disrupts Working Memory

    Get PDF
    Attended speech is comprehended better not only if more acoustic detail is available, but also if it is semantically highly predictable. But can more acoustic detail or higher predictability turn into disadvantages and distract a listener if the speech signal is to be ignored? Also, does the degree of distraction increase for older listeners who typically show a decline in attentional control ability? Adopting the irrelevant-speech paradigm, we tested whether younger (age 23–33 years) and older (60–78 years) listeners’ working memory for the serial order of spoken digits would be disrupted by the presentation of task-irrelevant speech varying in its acoustic detail (using noise-vocoding) and its semantic predictability (of sentence endings). More acoustic detail, but not higher predictability, of task-irrelevant speech aggravated memory interference. This pattern of results did not differ between younger and older listeners, despite generally lower performance in older listeners. Our findings suggest that the focus of attention determines how acoustics and predictability affect the processing of speech: First, as more acoustic detail is known to enhance speech comprehension and memory for speech, we here demonstrate that more acoustic detail of ignored speech enhances the degree of distraction. Second, while higher predictability of attended speech is known to also enhance speech comprehension under acoustically adverse conditions, higher predictability of ignored speech is unable to exert any distracting effect upon working memory performance in younger or older listeners. These findings suggest that features that make attended speech easier to comprehend do not necessarily enhance distraction by ignored speech

    Neural dynamics of selective attention to speech in noise

    Get PDF
    This thesis investigates how the neural system instantiates selective attention to speech in challenging acoustic conditions, such as spectral degradation and the presence of background noise. Four studies using behavioural measures, magneto- and electroencephalography (M/EEG) recordings were conducted in younger (20–30 years) and older participants (60–80 years). The overall results can be summarized as follows. An EEG experiment demonstrated that slow negative potentials reflect participants’ enhanced allocation of attention when they are faced with more degraded acoustics. This basic mechanism of attention allocation was preserved at an older age. A follow-up experiment in younger listeners indicated that attention allocation can be further enhanced in a context of increased task-relevance through monetary incentives. A subsequent study focused on brain oscillatory dynamics in a demanding speech comprehension task. The power of neural alpha oscillations (~10 Hz) reflected a decrease in demands on attention with increasing acoustic detail and critically also with increasing predictiveness of the upcoming speech content. Older listeners’ behavioural responses and alpha power dynamics were stronger affected by acoustic detail compared with younger listeners, indicating that selective attention at an older age is particularly dependent on the sensory input signal. An additional analysis of listeners’ neural phase-locking to the temporal envelopes of attended speech and unattended background speech revealed that younger and older listeners show a similar segregation of attended and unattended speech on a neural level. A dichotic listening experiment in the MEG aimed at investigating how neural alpha oscillations support selective attention to speech. Lateralized alpha power modulations in parietal and auditory cortex regions predicted listeners’ focus of attention (i.e., left vs right). This suggests that alpha oscillations implement an attentional filter mechanism to enhance the signal and to suppress noise. A final behavioural study asked whether acoustic and semantic aspects of task-irrelevant speech determine how much it interferes with attention to task-relevant speech. Results demonstrated that younger and older adults were more distracted when acoustic detail of irrelevant speech was enhanced, whereas predictiveness of irrelevant speech had no effect. All findings of this thesis are integrated in an initial framework for the role of attention for speech comprehension under demanding acoustic conditions

    Cortical alpha oscillations as a tool for auditory selective inhibition

    Get PDF
    Listening to speech is often demanding because of signal degradations and the presence of distracting sounds (i.e., "noise"). The question how the brain achieves the task of extracting only relevant information from the mixture of sounds reaching the ear (i.e., "cocktail party problem") is still open. In analogy to recent findings in vision, we propose cortical alpha (~10 Hz) oscillations measurable using M/EEG as a pivotal mechanism to selectively inhibit the processing of noise to improve auditory selective attention to task-relevant signals. We review initial evidence of enhanced alpha activity in selective listening tasks, suggesting a significant role of alpha-modulated noise suppression in speech. We discuss the importance of dissociating between noise interference in the auditory periphery (i.e., energetic masking) and noise interference with more central cognitive aspects of speech processing (i.e., informational masking). Finally, we point out the adverse effects of age-related hearing loss and/or cognitive decline on auditory selective inhibition. With this perspective article, we set the stage for future studies on the inhibitory role of alpha oscillations for speech processing in challenging listening situations.publishe

    The Benefit of Attention-to-Memory Depends on the Interplay of Memory Capacity and Memory Load

    No full text
    Humans can be cued to attend to an item in memory, which facilitates and enhances the perceptual precision in recalling this item. Here, we demonstrate that this facilitating effect of attention-to-memory hinges on the overall degree of memory load. The benefit an individual draws from attention-to-memory depends on her overall working memory performance, measured as sensitivity (d′) in a retroactive cue (retro-cue) pitch discrimination task. While listeners maintained 2, 4, or 6 auditory syllables in memory, we provided valid or neutral retro-cues to direct listeners’ attention to one, to-be-probed syllable in memory. Participants’ overall memory performance (i.e., perceptual sensitivity d′) was relatively unaffected by the presence of valid retro-cues across memory loads. However, a more fine-grained analysis using psychophysical modeling shows that valid retro-cues elicited faster pitch-change judgments and improved perceptual precision. Importantly, as memory load increased, listeners’ overall working memory performance correlated with inter-individual differences in the degree to which precision improved (r = 0.39, p = 0.029). Under high load, individuals with low working memory profited least from attention-to-memory. Our results demonstrate that retrospective attention enhances perceptual precision of attended items in memory but listeners’ optimal use of informative cues depends on their overall memory abilities

    Target Enhancement or Distractor Suppression? Functionally Distinct Alpha Oscillations form the Basis of Attention

    No full text
    Recent advances in attention research have been propelled by the debate on target enhancement versus distractor suppression. A predominant neural correlate of attention is the modulation of alpha oscillatory power (~10 Hz), which signifies shifts of attention in time, space and between sensory modalities. However, the underspecified functional role of alpha oscillations limits the progress of tracking down the neurocognitive basis of attention. In this short opinion article, we review and critically examine a synthesis of three conceptual and methodological aspects that are indispensable for a mechanistic understanding of the role of alpha oscillations for attention. (a) Precise mapping of the anatomical source and the temporal response profile of neural signals reveals distinct alpha oscillatory processes that implement facilitatory versus suppressive components of attention. (b) A testable framework enables unanimous association of alpha modulation with either target enhancement or different forms of distractor suppression (active vs. automatic). (c) Linking anatomically specified alpha oscillations to behavior reveals the causal nature of alpha oscillations for attention. The three reviewed aspects substantially enrich study design, data analysis and interpretation of results to achieve the goal of understanding how anatomically specified and functionally relevant neural oscillations contribute to the implementation of facilitatory versus suppressive components of attention

    Target enhancement or distractor suppression? Functionally distinct alpha oscillations form the basis of attention

    No full text
    Recent advances in attention research have been propelled by the debate on target enhancement versus distractor suppression. A predominant neural correlate of attention is the modulation of alpha oscillatory power (~10 Hz), which signifies shifts of attention in time, space and between sensory modalities. However, the underspecified functional role of alpha oscillations limits the progress of tracking down the neurocognitive basis of attention. In this short opinion article, we review and critically examine a synthesis of three conceptual and methodological aspects that are indispensable for a mechanistic understanding of the role of alpha oscillations for attention. (a) Precise mapping of the anatomical source and the temporal response profile of neural signals reveals distinct alpha oscillatory processes that implement facilitatory versus suppressive components of attention. (b) A testable framework enables unanimous association of alpha modulation with either target enhancement or different forms of distractor suppression (active vs. automatic). (c) Linking anatomically specified alpha oscillations to behavior reveals the causal nature of alpha oscillations for attention. The three reviewed aspects substantially enrich study design, data analysis and interpretation of results to achieve the goal of understanding how anatomically specified and functionally relevant neural oscillations contribute to the implementation of facilitatory versus suppressive components of attention

    The Benefit of Attention-to-Memory Depends on the Interplay of Memory Capacity and Memory Load

    No full text
    Humans can be cued to attend to an item in memory, which facilitates and enhances the perceptual precision in recalling this item. Here, we demonstrate that this facilitating effect of attention-to-memory hinges on the overall degree of memory load. The benefit an individual draws from attention-to-memory depends on her overall working memory performance, measured as sensitivity (d′) in a retroactive cue (retro-cue) pitch discrimination task. While listeners maintained 2, 4, or 6 auditory syllables in memory, we provided valid or neutral retro-cues to direct listeners’ attention to one, to-be-probed syllable in memory. Participants’ overall memory performance (i.e., perceptual sensitivity d′) was relatively unaffected by the presence of valid retro-cues across memory loads. However, a more fine-grained analysis using psychophysical modeling shows that valid retro-cues elicited faster pitch-change judgments and improved perceptual precision. Importantly, as memory load increased, listeners’ overall working memory performance correlated with inter-individual differences in the degree to which precision improved (r = 0.39, p = 0.029). Under high load, individuals with low working memory profited least from attention-to-memory. Our results demonstrate that retrospective attention enhances perceptual precision of attended items in memory but listeners’ optimal use of informative cues depends on their overall memory abilities
    corecore