100 research outputs found

    A parametric study

    Get PDF
    Based on both static (extended Köhler) and dynamic modelling, we investigate the influence of temperature,humidity, HNO3 initial concentration, as well as of the particle concentration, on the efficiency of HNO3-mediated laser- induced condensation. This mechanism is most efficient for low temperatures, high HNO3 concentration, and relative humidities. It is, however, still active up to 30 °C, down to 70% relative humidity, and below the ppm level of HNO3. Furthermore, lower particle concentration minimizing the depletion of both HNO3 and water vapor is more favourable to particle growth

    Saturation of the filament density of ultrashort intense laser pulses in air

    Get PDF
    We experimentally and numerically characterize multiple filamentation of laser pulses with incident intensities of a few TW/cm2. Propagating 100TW laser pulses over 42m in air, we observe a new propagation regime where the filament density saturates. As also evidenced by numerical simulations in the same intensity range, the total number of filaments is governed by geometric constraints and mutual interactions among filaments rather than by the available power in the bea

    Multijoule scaling of laser-induced condensation in air

    Get PDF
    Using 100 TW laser pulses, we demonstrate that laser-induced nanometric particle generation in air increases much faster than the beam-averaged incident intensity. This increase is due to a contribution from the photon bath, which adds up with the previously identified one from the filaments and becomes dominant above 550 GW/cm2. It appears related to ozone formation via multiphotondissociation of the oxygen molecules and demonstrates the critical need for further increasing the laser energy in view of macroscopic effects in laser-induced condensation

    Angular Dependences of Third Harmonic Generation from Microdroplets

    Full text link
    We present experimental and theoretical results for the angular dependence of third harmonic generation (THG) of water droplets in the micrometer range (size parameter 62<ka<24862<ka<248). The THG signal in pp- and ss-polarization obtained with ultrashort laser pulses is compared with a recently developed nonlinear extension of classical Mie theory including multipoles of order l250l\leq250. Both theory and experiment yield over a wide range of size parameters remarkably stable intensity maxima close to the forward and backward direction at ``magic angles''. In contrast to linear Mie scattering, both are of comparable intensity.Comment: 4 pages, RevTeX, 3 figures available on request from [email protected], submitted to PR

    Ultrashort filaments of light in weakly-ionized, optically-transparent media

    Get PDF
    Modern laser sources nowadays deliver ultrashort light pulses reaching few cycles in duration, high energies beyond the Joule level and peak powers exceeding several terawatt (TW). When such pulses propagate through optically-transparent media, they first self-focus in space and grow in intensity, until they generate a tenuous plasma by photo-ionization. For free electron densities and beam intensities below their breakdown limits, these pulses evolve as self-guided objects, resulting from successive equilibria between the Kerr focusing process, the chromatic dispersion of the medium, and the defocusing action of the electron plasma. Discovered one decade ago, this self-channeling mechanism reveals a new physics, widely extending the frontiers of nonlinear optics. Implications include long-distance propagation of TW beams in the atmosphere, supercontinuum emission, pulse shortening as well as high-order harmonic generation. This review presents the landmarks of the 10-odd-year progress in this field. Particular emphasis is laid to the theoretical modeling of the propagation equations, whose physical ingredients are discussed from numerical simulations. Differences between femtosecond pulses propagating in gaseous or condensed materials are underlined. Attention is also paid to the multifilamentation instability of broad, powerful beams, breaking up the energy distribution into small-scale cells along the optical path. The robustness of the resulting filaments in adverse weathers, their large conical emission exploited for multipollutant remote sensing, nonlinear spectroscopy, and the possibility to guide electric discharges in air are finally addressed on the basis of experimental results.Comment: 50 pages, 38 figure

    Analysis of copy number variation in men with non-obstructive azoospermia

    Get PDF
    BACKGROUND: Recent findings demonstrate that single nucleotide variants can cause non-obstructive azoospermia (NOA). In contrast, copy number variants (CNVs) were only analysed in few studies in infertile men. Some have reported a higher prevalence of CNVs in infertile versus fertile men. OBJECTIVES: This study aimed to elucidate if CNVs are associated with NOA. MATERIALS AND METHODS: We performed array-based comparative genomic hybridization (aCGH) in 37 men with meiotic arrest, 194 men with Sertoli cell-only phenotype, and 21 control men. We filtered our data for deletions affecting genes and prioritized the affected genes according to a literature search. Prevalence of CNVs was compared between all groups. Exome data of 2,030 men were screened to detect further genetic variants in prioritized genes. Modelling was performed for the protein encoded by the novel candidate gene TEKT5 and we stained for TEKT5 in human testicular tissue. RESULTS: We determined the cause of infertility in two individuals with homozygous deletions of SYCE1 and in one individual with a heterozygous deletion of SYCE1 combined with a likely pathogenic missense variant on the second allele. We detected heterozygous deletions affecting MLH3, EIF2B2, SLX4, CLPP and TEKT5, in one subject each. CNVs were not detected more frequently in infertile men compared with controls. DISCUSSION: While SYCE1 and MLH3 encode known meiosis-specific proteins, much less is known about the proteins encoded by the other identified candidate genes, warranting further analyses. We were able to identify the cause of infertility in one out of the 231 infertile men by aCGH and in two men by using exome sequencing data. CONCLUSION: As aCGH and exome sequencing are both expensive methods, combining both in a clinical routine is not an effective strategy. Instead, using CNV calling from exome data has recently become more precise, potentially making aCGH dispensable

    Discovery of potential causative mutations in human coding and noncoding genome with the interactive software BasePlayer

    Get PDF
    Next-generation sequencing (NGS) is routinely applied in life sciences and clinical practice, but interpretation of the massive quantities of genomic data produced has become a critical challenge. The genome-wide mutation analyses enabled by NGS have had a revolutionary impact in revealing the predisposing and driving DNA alterations behind a multitude of disorders. The workflow to identify causative mutations from NGS data, for example in cancer and rare diseases, commonly involves phases such as quality filtering, case-control comparison, genome annotation, and visual validation, which require multiple processing steps and usage of various tools and scripts. To this end, we have introduced an interactive and user-friendly multi-platform-compatible software, BasePlayer, which allows scientists, regardless of bioinformatics training, to carry out variant analysis in disease genetics settings. A genome-wide scan of regulatory regions for mutation clusters can be carried out with a desktop computer in -10 min with a dataset of 3 million somatic variants in 200 whole-genome-sequenced (WGS) cancers.Peer reviewe

    Lasers: technology and applications

    No full text
    corecore