68 research outputs found

    Magmatic Longevity of Laacher See Volcano (Eifel, Germany) Indicated by U-Th Dating of Intrusive Carbonatites

    Get PDF
    Uranium-series dating of carbonatitic ejecta clasts constrains the crystallization and differentiation timescales of the Laacher See volcano, which erupted 6·3 km3 of magma (dense rock equivalent) during one of the largest Late Quaternary eruptions in Central Europe. Carbonatites form a distinct population among plutonic ejecta that are present in the middle and late erupted Laacher See tephra. Characteristic trace element patterns of the carbonatites, including negative Eu anomalies, and mantle-like oxygen isotopic compositions preserved in zircon indicate that the Laacher See carbonatites are cogenetic with their phonolite host. Carbonatite U-Th zircon isochron ages range from 32·6 ± 4·1 ka (2σ; MSWD = 1·7; n = 24) to near-eruption age (12·9 ka). Uranium-series carbonatite ages qualitatively agree with alkali feldspar compositions that lack prominent magmatic zonation, but show evidence for perthitic unmixing during subsolidus residence at elevated temperatures (720°C). Model differentiation ages and crystallization ages for the carbonatites overlap within a few thousand years as resolved by U-Th dating and indicate rapid crystallization following carbonatite segregation from its parental phonolite. Model differentiation and zircon isochron ages peak at ∼17 ka, suggesting a major phase of differentiation of the Laacher See magma system at this time, although the onset of phonolite differentiation dates back to at least ∼10-20 kyr prior to eruption. Phenocrysts in the middle and late erupted phonolite magma crystallized shortly before eruption, and the lack of older crystals implies crystal removal through settling or resorption. Crystal ages from both crystal-rich and liquid-dominated parts of a magma system are thus complementary, and reveal different aspects of magma differentiation and residence timescale

    Magma evolution of Quaternary minor volcanic centres in southern Peru, Central Andes

    Get PDF
    Minor centres in the Central Volcanic Zone (CVZ) of the Andes occur in different places and are essential indicators of magmatic processes leading to formation of composite volcano. The Andahua-Orcopampa and Huambo monogenetic fields are located in a unique tectonic setting, in and along the margins of a deep valley. This valley, oblique to the NW-SE-trend of the CVZ, is located between two composite volcanoes (Nevado Coropuna to the east and Nevado Sabancaya to the west). Structural analysis of these volcanic fields, based on SPOT satellite images, indicates four main groups of faults. These faults may have controlled magma ascent and the distribution of most centres in this deep valley shaped by en-echelon faulting. Morphometric criteria and 14C age dating attest to four main periods of activity: Late Pleistocene, Early to Middle Holocene, Late Holocene and Historic. The two most interesting features of the cones are the wide compositional range of their lavas (52.1 to 68.1wt.% SiO2) and the unusual occurrence of mafic lavas (olivine-rich basaltic andesites and basaltic andesites). Occurrence of such minor volcanic centres and mafic magmas in the CVZ may provide clues about the magma source in southern Peru. Such information is otherwise difficult to obtain because lavas produced by composite volcanoes are affected by shallow processes that strongly mask source signatures. Major, trace, and rare earth elements, as well as Sr-, Nd-, Pb- and O-isotope data obtained on high-K calc-alkaline lavas of the Andahua-Orcopampa and Huambo volcanic province characterise their source and their evolution. These lavas display a range comparable to those of the CVZ composite volcanoes for radiogenic and stable isotopes (87Sr/86Sr: 0.70591-0.70694, 143Nd/144Nd: 0.512317-0.512509, 206Pb/204Pb: 18.30-18.63, 207Pb/204Pb: 15.57-15.60, 208Pb/204Pb: 38.49-38.64, and δ 18O: 7.1-10.0‰ SMOW), attesting to involvement of a crustal component. Sediment is absent from the Peru-Chile trench, and hence cannot be the source of such enrichment. Partial melts of the lowermost part of the thick Andean continental crust with a granulitic garnet-bearing residue added to mantle-derived arc magmas in a high-pressure MASH [melting, assimilation, storage and homogenisation] zone may play a major role in magma genesis. This may also explain the chemical characteristics of the Andahua-Orcopampa and Huambo magmas. Fractional crystallisation processes are the main governors of magma evolution for the Andahua-Orcopampa and Huambo volcanic province. An open-system evolution is, however, required to explain some O-isotopes and some major and trace elements values. Modelling of AFC processes suggests the Charcani gneisses and the local Andahua-Orcopampa and Huambo basement may be plausible contaminant

    Geochemical, Isotopic and Single Crystal 40Ar/39Ar Age Constraints on the Evolution of the Cerro Galan Ignimbrites

    Get PDF
    The giant ignimbrites that erupted from the Cerro Galan caldera complex in the southern Puna of the high Andean plateau are considered to be linked to crustal and mantle melting as a consequence of delamination of gravitationally unstable thickened crust and mantle lithosphere over a steepening subduction zone. Major and trace element analyses of Cerro Galan ignimbrites (68-71% SiO2) that include 65 new analyses can be interpreted by evolution at three crustal levels. AFC modeling and new fractionation corrected d18O values from quartz (+7.63-8.85%o) are consistent with the ignimbrite magmas being near 50:50 mixtures of enriched mantle (87Sr/86Sr ~ 0.7055) and crustal melts (87Sr/86Sr near 0.715-0.735). Processes at lower crustal levels are predicated on steep heavy REE patterns (Sm/Yb = 4-7), high Sr contents (>250 ppm) and very low Nb/Ta (9-5) ratios, which are attributed to amphibolite partial melts mixing with fractionating mantle basalts to produces hybrid melt that rise leaving a gravitationally unstable garnet-bearing residue. Processes at mid crustal levels create large negative Eu anomalies (Eu/Eu* = 0.45-0.70) and variable trace element enrichment in a crystallizing mush zone with a temperature near 800-850ºC The mush zone was repeatedly recharged from depth and partially evacuated into upper crustal magma chambers at times of regional contraction. Crystallinity differences in the ignimbrites are attributed to biotite, zoned plagioclase and other antecrysts entering higher level chambers where variable amounts of near-eutectic crystallization occurs at temperature as low as 680ºC just preceding eruption. 40Ar/39Ar single crystal sanidine weighted mean plateau and isochron ages combined with trace element patterns show that the Galan ignimbrite erupted in more than one batch including a ~ 2.13 Ma intracaldera flow and outflows to the west and north at near 2.09 and 2.06 Ma. Episodic delamination of gravitationally unstable lower crust and mantle lithosphere and injection of basaltic magmas whose changing chemistry reflects their evolution over a steepening subduction zone could trigger the eruptions of the Cerro Galan ignimbrites.Fil: Kay, Suzanne Mahlburg. Cornell University; Estados UnidosFil: Coira, Beatriz Lidia Luisa. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Wörner, Gerhard. Universität Göttingen; AlemaniaFil: Kay, Robert W.. Cornell University; Estados UnidosFil: Singer, Bradley S.. University of Wisconsin; Estados Unido

    Sources of dehydration fluids underneath the Kamchatka arc

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Shu, Y., Nielsen, S. G., Le Roux, V., Wörner, G., Blusztajn, J., & Auro, M. Sources of dehydration fluids underneath the Kamchatka arc. Nature Communications, 13(1), (2022): 4467, https://doi.org/10.1038/s41467-022-32211-5.Fluids mediate the transport of subducted slab material and play a crucial role in the generation of arc magmas. However, the source of subduction-derived fluids remains debated. The Kamchatka arc is an ideal subduction zone to identify the source of fluids because the arc magmas are comparably mafic, their source appears to be essentially free of subducted sediment-derived components, and subducted Hawaii-Emperor Seamount Chain (HESC) is thought to contribute a substantial fluid flux to the Kamchatka magmas. Here we show that Tl isotope ratios are unique tracers of HESC contribution to Kamchatka arc magma sources. In conjunction with trace element ratios and literature data, we trace the progressive dehydration and melting of subducted HESC across the Kamchatka arc. In succession, serpentine (250 km depth) break down and produce fluids that contribute to arc magmatism at the Eastern Volcanic Front (EVF), Central Kamchatka Depression (CKD), and Sredinny Ridge (SR), respectively. However, given the Tl-poor nature of serpentine and lawsonite fluids, simultaneous melting of subducted HESC is required to explain the HESC-like Tl isotope signatures observed in EVF and CKD lavas. In the absence of eclogitic crust melting processes in this region of the Kamchatka arc, we propose that progressive dehydration and melting of a HESC-dominated mélange offers the most compelling interpretation of the combined isotope and trace element data.This study was financially supported by grants from the National Natural Science Foundation of China (NSFC) (Grant No. 41903008) and Chinese Postdoctoral Science Foundation (Grant No. 2019M660153) to Y.S., NSF (Grant No. EAR-1829546) to S.G.N. and NSF (Grant No. EAR-1855302) to V.L.R

    Neogene ignimbrites and volcanic edifices in southern Peru: Stratigraphy and time-volume-composition relationships

    Get PDF
    In the Central Andes of Peru, four volcanic arcs, termed Tacaza, Lower and Upper Barroso, and Frontal arc, have been active over the past 30 Ma (Fig. 1). They form five units between Moquegua and Nazca (14°30– 17°15’°S and 70–74°W). The ‘Neogene ignimbrites’ (<25 Ma) comprise six generations of widespread sheets (>500 km2 and >20 km3 each), representing a major crustal melting event, triggered by thickening and advective heat input from the mantle wedge. Also, four generations of edifices (i.e shields, composite cones, and dome clusters) and monogenetic fields mostly overly the ignimbrites based on ages, stratigraphy and mapping
    corecore