72 research outputs found

    Hydrothermal synthesis of anisotropic alkali and alkaline earth vanadates

    Get PDF
    In the course of a systematic field study, anisotropic alkali and alkaline earth vanadates have been accessed through a straightforward, one-step hydrothermal process. They are formed quantitatively from V2O5 and alkali- or alkaline earth halide solutions after a few days of autoclave treatment in the temperature range between 100 and 220 °C. The presence of ionic additives leads to an interplay between the formation of isotropic crystalline phases and the production of fibrous oxide materials, such as a novel magnesium vanadate. The influence of the hydrothermal parameters and of the alkali/alkaline earth halides on the emerging phases and morphologies has been investigated in the course of a systematic study. The results are compared with other vanadate- and transition metal oxide-based hydrothermal systems, and the emerging trends are discussed with respect to the development of predictive synthetic concepts for nanostructured vanadium oxide

    Modeling intermodal travel behavior in an agent-based travel demand model

    Get PDF
    The topic of intermodal passenger mobility has become more important during the last 20 years. As mobility options increase in number and flexibility, it gets more and more attractive to combine multiple modes on single trips. In addition, intermodal travel behavior is expected to contribute to less car dependent mobility and transport sector’s reduction of greenhouse gas emissions. Creating and improving the conditions for such a behavior requires planning with knowledge about influencing factors and highest resistances. Empirical evidence and behavioral models can support decisions on measures improving intermodal travel supply. This work presents an agent-based model approach containing intermodal travel behavior with regard to its most important decisions. It enables the combination of a multitude of modes and can be extended to even more modes. By combining many decisions and influences it is comprehensible and adaptable to different surveys and circumstances. We show that results are realistic and impacts are valid to be able to forecast effects of potential measures

    Using OpenStreetMap as a Data Source for Attractiveness in Travel Demand Models

    Get PDF
    We present a methodology to extract points of interest (POIs) data from OpenStreetMap (OSM) for application in travel demand models. We use custom taglists to identify and assign POI elements to typical activities used in travel demand models. We then compare the extracted OSM data with official sources and point out that the OSM data quality depends on the type of POI and that it generally matches the quality of official sources. It can therefore be used in travel demand models. However, we recommend that plausibility checks should be done to ensure a certain quality. Further, we present a methodology for calculating attractiveness measures for typical activities from single POIs and national trip generation guidelines. We show that the quality of these calculated measures is good enough for them to be used in travel demand models. Using our approach, therefore, allows the quick, automated, and flexible generation of attractiveness measures for travel demand models

    Quality Assessment of OpenStreetMap’s Points of Interest with Large-Scale Real Data

    Get PDF
    OpenStreetMap (OSM) data are geographical data that are easy and open to access and therefore used for a large set of applications including travel demand modeling. However, often there is a limited awareness about the shortcomings of volunteered geographic information data, such as OSM. One important issue for the application in travel demand modeling is the completeness of OSM elements, particularly points of interest (POI), since it directly influences the predictions of trip distributions. This might cause unreliable model sensitivities and end up in wrong predictions leading to expensive misinterpretations of the effects of policy measures. Because of a lack of large-scale real-world data, a detailed assessment of the quality of POI from OSM has not been done yet. Therefore, in this work, we assess the quality of POI from OSM for use within travel demand models using surveyed real-world data from 49 areas in Germany. We perform a descriptive and a model-based analysis using spatial, demographic, and intrinsic indicators for two common trip purpose categories used in travel demand modeling. We show that the completeness of POI data in OSM depends on the category of POI. We further show that intrinsic indicators and indicators calculated based on data from other sources (e.g., land use or census data) are able to detect quality deficiencies of OSM data

    Magnetic and crystal structure of the antiferromagnetic skyrmion candidate GdSb0.71Te1.22

    Get PDF
    GdSb0.46Te1.48, a nonsymmorphic Dirac semimetal with Dirac nodes at the Fermi level, has a rich magnetic phase diagram with one of the phases predicted to be an antiferromagnetic skyrmion state. In the current work, we investigate GdSb0.71Te1.22 through bulk magnetization measurements, single-crystal, and powder synchrotron X-ray diffraction, as well as single-crystal hot-neutron diffraction. We resolve a weak orthorhombic distortion with respect to the tetragonal structure and charge density wave (CDW) satellites due to incommensurate modulations of the crystal structure. At 2 K the magnetic structure is modulated with two propagation vectors, kI = (0.45 0 0.45) and kII = (0.4 0 0), with all their arms visible. While kI persists up to the transition to the paramagnetic state at TN = 11.9 K, kII disappears above an intermediate magnetic transition at T1 = 5 K. Whereas magnetic field applied along the c-axis has only a weak effect on the intensity of antiferromagnetic reflections, it is effective in inducing an additional ferromagnetic component on Gd atoms. We refine possible magnetic structures of GdSb0.71Te1.22 and discuss the possibility of hosting magnetic textures with non-trivial 3D+ 2 topologies in the GdSb1−xTe1+x series.ISSN:0925-8388ISSN:1873-466

    Fischer-type gold(I) carbene complexes stabilized by aurophilic interactions

    Get PDF
    The synthesis and structure of rare acyclic alkoxy- and aminocarbene complexes of gold(I) are reported, including a novel ferrocenophane dinuclear biscarbene complex. X-Ray diffraction analyses and DFT calculations reveal that these complexes are stabilized by genuine aurophilic interactions.National Research Foundation,South Africa (D.I.B., Grant number 76226), and the Spanish MICINN and CAM (I.F., Grants CTQ2010-20714-CO2-01/BQU, Consolider-Ingenio 2010, CSD2007-00006,S2009/PPQ-1634).http://www.rsc.org/dalton2015-02-28hb201

    A novel multiplex detection array revealed systemic complement activation in oral squamous cell carcinoma

    Get PDF
    Oral squamous cell carcinoma (OSCC) is one of the most common tumors within the oral cavity. Early diagnosis and prognosis tools are urgently needed. This study aimed to investigate the activation of the complement system in OSCC patients as potential biomarker. Therefore, an innovative complement activation array was developed. Characterized antibodies detecting the complement activation specific epitopes C3a, C5a and sC5b-9 along with control antibodies were implemented into a suspension bead array. Human serum from a healthy (n = 46) and OSCC patient (n = 57) cohort were used to investigate the role of complement activation in oral tumor progression. The novel multiplex assay detected C3a, C5a and sC5b-9 from a minimal sample volume of human tears, aqueous humor and blood samples. Limits of detection were 0.04 ng/mL for C3a, 0.03 ng/mL for C5a and 18.9 ng/mL for sC5b-9, respectively. Biological cut-off levels guaranteed specific detections from serum. The mean serum concentration of a healthy control cohort was 680 ng/mL C3a, 70 ng/mL C5a and 2247 ng/mL sC5b-9, respectively. The assay showed an intra-assay precision of 2.9-6.4% and an inter-assay precision of 9.2-18.2%. Increased systemic C5a (p < 0.0001) and sC5b-9 (p = 0.01) concentrations in OSCC patients were determined using the validated multiplex complement assay. Higher C5a concentrations correlated with tumor differentiation and OSCC extension state. Systemic sC5b-9 determination provided a novel biomarker for infiltrating tumor growth and C3a levels were associated with local tumor spreading. Our study suggests that systemic complement activation levels in OSCC patients may be useful to assess disease progression

    Emerging methods and tools for environmental risk assessment, decision-making, and policy for nanomaterials: summary of NATO Advanced Research Workshop

    Get PDF
    Nanomaterials and their associated technologies hold promising opportunities for the development of new materials and applications in a wide variety of disciplines, including medicine, environmental remediation, waste treatment, and energy conservation. However, current information regarding the environmental effects and health risks associated with nanomaterials is limited and sometimes contradictory. This article summarizes the conclusions of a 2008 NATO workshop designed to evaluate the wide-scale implications (e.g., benefits, risks, and costs) of the use of nanomaterials on human health and the environment. A unique feature of this workshop was its interdisciplinary nature and focus on the practical needs of policy decision makers. Workshop presentations and discussion panels were structured along four main themes: technology and benefits, human health risk, environmental risk, and policy implications. Four corresponding working groups (WGs) were formed to develop detailed summaries of the state-of-the-science in their respective areas and to discuss emerging gaps and research needs. The WGs identified gaps between the rapid advances in the types and applications of nanomaterials and the slower pace of human health and environmental risk science, along with strategies to reduce the uncertainties associated with calculating these risks

    Automated Scheduling for TerraSAR-X/TanDEM-X

    Get PDF
    In 2007 the satellite TSX-1 of the mission TerraSAR-X has been launched. Its primary payload is an active radar instrument, which shall supply radar images on request for commercial and scientific users. With a maximum load of up to 1000 datatake requests per day and an order deadline of six hours before uplink, the command generation process had to be fully automated. The complexity of the satellite and the evolving knowledge of its constraints exposed further challenges on implementation of the scheduling process. In 2010 a copy of TSX-1 has been launched: the TDX-1 satellite. When operating in close formation (i.e. distances of 250m-400m) this pair of satellites may execute stereoscopic datatakes which allow the generation of a digital elevation model. However several inter-satellite constraints need to be taken into account when operating at such short distances. Additionally we have two distinct missions, which need to be merged together: First, we have the old TerraSAR-X mission, for which the customers usually ingest their high-priority orders very late, for example for disaster monitoring. Second, we have the TanDEM-X mission, whose goal is a complete coverage of the earth in 3D with best possible accuracy. For this mission the datatakes are calculated up to one year in advance. This paper shows what techniques have been developed in order to cope with the challenging requirements of combining two missions and handling a two-satellites-system
    corecore