75 research outputs found

    Rhodium-Complex-Functionalized and Polydopamine-Coated CdSe@CdS Nanorods for Photocatalytic NAD+ Reduction

    Get PDF
    [Image: see text] We report on a photocatalytic system consisting of CdSe@CdS nanorods coated with a polydopamine (PDA) shell functionalized with molecular rhodium catalysts. The PDA shell was implemented to enhance the photostability of the photosensitizer, to act as a charge-transfer mediator between the nanorods and the catalyst, and to offer multiple options for stable covalent functionalization. This allows for spatial proximity and efficient shuttling of charges between the sensitizer and the reaction center. The activity of the photocatalytic system was demonstrated by light-driven reduction of nicotinamide adenine dinucleotide (NAD(+)) to its reduced form NADH. This work shows that PDA-coated nanostructures present an attractive platform for covalent attachment of reduction and oxidation reaction centers for photocatalytic applications

    Antibiotics prescribing practices in oral implantology among jordanian dentists. A cross sectional, observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In oral implantology, there is no consensus on the most appropriate regimen for antibiotics prescribing, the decision to prescribe antibiotic is usually based on procedure, patient and clinician related factors. The aim of this study was to investigate the rationale of antibiotic prescribing among Jordanian clinicians who practice oral implantology.</p> <p>Findings</p> <p>The target sample for the study was the 250 Jordan Dental Implant Group members. A five page questionnaire contained 41 questions, both closed and open questions were used to collect data. Statistical analysis was performed using SPSS Windows 16.0 (SPSS Inc., Chicago, IL, USA). Descriptive statistics were generated.</p> <p>The response rate was (70.4%) 176/250. Mean age was 37.2 yrs, 49.4% always prescribe antibiotics mainly oral amoxicillin and amoxicillin with clavulinic acid. Antibiotics prescribing increased with flap raising, multiple implants and sinus or bone augmentation. Patient medical condition, periodontitis and oral hygiene were the most important clinical factors in antibiotic prescribing, non-clinical factors were; reading scientific materials, courses and lectures, knowledge gained during training, and the effectiveness and previous experience with the drug.</p> <p>Conclusions</p> <p>Wide variations in antibiotics types, routes, dose and duration of administration were found. Recommendations on antibiotic prescribing are needed to prevent antibiotic overprescribing and misuse.</p

    Candida albicans Scavenges Host Zinc via Pra1 during Endothelial Invasion

    Get PDF
    The ability of pathogenic microorganisms to assimilate essential nutrients from their hosts is critical for pathogenesis. Here we report endothelial zinc sequestration by the major human fungal pathogen, Candida albicans. We hypothesised that, analogous to siderophore-mediated iron acquisition, C. albicans utilises an extracellular zinc scavenger for acquiring this essential metal. We postulated that such a “zincophore” system would consist of a secreted factor with zinc-binding properties, which can specifically reassociate with the fungal cell surface. In silico analysis of the C. albicans secretome for proteins with zinc binding motifs identified the pH-regulated antigen 1 (Pra1). Three-dimensional modelling of Pra1 indicated the presence of at least two zinc coordination sites. Indeed, recombinantly expressed Pra1 exhibited zinc binding properties in vitro. Deletion of PRA1 in C. albicans prevented fungal sequestration and utilisation of host zinc, and specifically blocked host cell damage in the absence of exogenous zinc. Phylogenetic analysis revealed that PRA1 arose in an ancient fungal lineage and developed synteny with ZRT1 (encoding a zinc transporter) before divergence of the Ascomycota and Basidiomycota. Structural modelling indicated physical interaction between Pra1 and Zrt1 and we confirmed this experimentally by demonstrating that Zrt1 was essential for binding of soluble Pra1 to the cell surface of C. albicans. Therefore, we have identified a novel metal acquisition system consisting of a secreted zinc scavenger (“zincophore”), which reassociates with the fungal cell. Furthermore, functional similarities with phylogenetically unrelated prokaryotic systems indicate that syntenic zinc acquisition loci have been independently selected during evolution

    Cell cycle-independent phospho-regulation of Fkh2 during hyphal growth regulates Candida albicans pathogenesis.

    Get PDF
    The opportunistic human fungal pathogen, Candida albicans, undergoes morphological and transcriptional adaptation in the switch from commensalism to pathogenicity. Although previous gene-knockout studies have identified many factors involved in this transformation, it remains unclear how these factors are regulated to coordinate the switch. Investigating morphogenetic control by post-translational phosphorylation has generated important regulatory insights into this process, especially focusing on coordinated control by the cyclin-dependent kinase Cdc28. Here we have identified the Fkh2 transcription factor as a regulatory target of both Cdc28 and the cell wall biosynthesis kinase Cbk1, in a role distinct from its conserved function in cell cycle progression. In stationary phase yeast cells 2D gel electrophoresis shows that there is a diverse pool of Fkh2 phospho-isoforms. For a short window on hyphal induction, far before START in the cell cycle, the phosphorylation profile is transformed before reverting to the yeast profile. This transformation does not occur when stationary phase cells are reinoculated into fresh medium supporting yeast growth. Mass spectrometry and mutational analyses identified residues phosphorylated by Cdc28 and Cbk1. Substitution of these residues with non-phosphorylatable alanine altered the yeast phosphorylation profile and abrogated the characteristic transformation to the hyphal profile. Transcript profiling of the phosphorylation site mutant revealed that the hyphal phosphorylation profile is required for the expression of genes involved in pathogenesis, host interaction and biofilm formation. We confirmed that these changes in gene expression resulted in corresponding defects in pathogenic processes. Furthermore, we identified that Fkh2 interacts with the chromatin modifier Pob3 in a phosphorylation-dependent manner, thereby providing a possible mechanism by which the phosphorylation of Fkh2 regulates its specificity. Thus, we have discovered a novel cell cycle-independent phospho-regulatory event that subverts a key component of the cell cycle machinery to a role in the switch from commensalism to pathogenicity

    Molekulare Charakterisierung der IDS 1 aus Fichte (Picea abies) nach partiellem Aminosäureaustausch

    No full text

    A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Picea abies

    No full text
    The conifer Picea abies (Norway spruce) defends itself against herbivores and pathogens with a terpenoid-based oleoresin composed chiefly of monoterpenes (C(10)) and diterpenes (C(20)). An important group of enzymes in oleoresin biosynthesis are the short-chain isoprenyl diphosphate synthases that produce geranyl diphosphate (C(10)), farnesyl diphosphate (C(15)), and geranylgeranyl diphosphate (C(20)) as precursors of different terpenoid classes. We isolated a gene from P. abies via a homology-based polymerase chain reaction approach that encodes a short-chain isoprenyl diphosphate synthase making an unusual mixture of two products, geranyl diphosphate (C(10)) and geranylgeranyl diphosphate (C(20)). This bifunctionality was confirmed by expression in both prokaryotic (Escherichia coli) and eukaryotic (P. abies embryogenic tissue) hosts. Thus, this isoprenyl diphosphate synthase, designated PaIDS1, could contribute to the biosynthesis of both major terpene types in P. abies oleoresin. In saplings, PaIDS1 transcript was restricted to wood and bark, and transcript level increased dramatically after methyl jasmonate treatment, which induces the formation of new (traumatic) resin ducts. Polyclonal antibodies localized the PaIDS1 protein to the epithelial cells surrounding the traumatic resin ducts. PaIDS1 has a close phylogenetic relationship to single-product conifer geranyl diphosphate and geranylgeranyl diphosphate synthases. Its catalytic properties and reaction mechanism resemble those of conifer geranylgeranyl diphosphate synthases, except that significant quantities of the intermediate geranyl diphosphate are released. Using site-directed mutagenesis and chimeras of PaIDS1 with single-product geranyl diphosphate and geranylgeranyl diphosphate synthases, specific amino acid residues were identified that alter the relative composition of geranyl to geranylgeranyl diphosphate
    corecore