3,207 research outputs found

    Modelling the consequences of interactions between tumour cells.

    Get PDF
    Classical models of tumorigenesis assume that the mutations which cause tumours to grow act in a cell-autonomous fashion. This is not necessarily true. Sometimes tumour cells may adopt genetic strategies that boost their own replication and which also influence other cells in the tumour, whether directly or as a side-effect. Tumour growth as a whole might be enhanced or retarded. We have used mathematical models to study two non-autonomous strategies that tumour cells may use. First, we have considered the production by tumour cells of an angiogenesis growth factor that benefits both the cell from which it originates and neighbouring cells. Second, we have analysed a situation in which tumour cells produce autocrine-only or paracrine-only growth factors to prevent programmed cell death. In the angiogenesis model, stable genetic polymorphisms are likely to occur between cells producing and not producing the growth factor. In the programmed cell death model, cells with autocrine growth factor production can spread throughout the tumour. Production of paracrine-only growth factor is never selected because it is 'altruistic' (that is of no benefit to the cell that makes the growth factor), despite being potentially beneficial to tumour growth as a whole. No polymorphisms can occur in the programmed cell death model. Production of angiogenesis and other growth factors in tumours may be under stable genetic, rather than epigenetic, control, with implications for therapies aimed at such targets. Many of the mutations observed in tumours may have non-autonomous effects

    Superlubricity - a new perspective on an established paradigm

    Full text link
    Superlubricity is a frictionless tribological state sometimes occurring in nanoscale material junctions. It is often associated with incommensurate surface lattice structures appearing at the interface. Here, by using the recently introduced registry index concept which quantifies the registry mismatch in layered materials, we prove the existence of a direct relation between interlayer commensurability and wearless friction in layered materials. We show that our simple and intuitive model is able to capture, down to fine details, the experimentally measured frictional behavior of a hexagonal graphene flake sliding on-top of the surface of graphite. We further predict that superlubricity is expected to occur in hexagonal boron nitride as well with tribological characteristics very similar to those observed for the graphitic system. The success of our method in predicting experimental results along with its exceptional computational efficiency opens the way for modeling large-scale material interfaces way beyond the reach of standard simulation techniques.Comment: 18 pages, 7 figure

    Allele loss occurs frequently at hMLH1, but rarely at hMSH2, in sporadic colorectal cancers with microsatellite instability.

    Get PDF
    Mutations at the hMSH2 and hMLH1 mismatch repair loci have been implicated in the pathogenesis of colorectal cancer. Tumours with two allelic mutations at a mismatch repair locus develop replication errors (RERs). In the hereditary non-polyposis colorectal cancer (HNPCC) syndrome, one mutation is inherited and the other acquired somatically: in RER+ sporadic colorectal cancers, both mutations are somatic. RER+ tumours tend to have a low frequency of allele loss, presumably because they acquire most mutations through RERs. However, before a second mismatch repair mutation has occurred somatically, there is no reason to suppose that allele loss occurs less frequently in tumours that are to become RER+. Indeed, this second mutation might itself occur by allele loss. We have searched for allele loss at the hMSH2 and hMLH1 loci in RER+ and RER- sporadic colorectal cancers. Loss occurred at the hMLH1 locus in 7/17 (41%) RER+ tumours, compared with 6/40 (15%) RER- cancers (chi2=3.82, P approximately 0.05). At hMSH2, 2/22 RER+ sporadic cancers (9%) had lost an allele, compared with 2/40 (5%) RER- cancers (chi2=0.03, P>0.5). Taken together with previous studies which focused on colorectal cancers from HNPCC families, the data suggest that allele loss at hMLH1, but not at hMSH2, contributes to defective mismatch repair in inherited and sporadic colorectal cancer

    Allele loss and mutation screen at the Peutz-Jeghers (LKB1) locus (19p13.3) in sporadic ovarian tumours

    Get PDF
    Germline mutations in the LKB1 (STK11) gene (chromosome sub-band 19p13.3) cause characteristic hamartomas and pigmentation to develop in patients with Peutz-Jeghers syndrome. Peutz-Jeghers syndrome carries an overall risk of cancer that may be up to 20 times that of the general population and Peutz-Jeghers patients are at increased risk of benign and malignant ovarian tumours, particularly granulosa cell tumours. Loss of heterozygosity (allele loss, LOH) has been reported in about 50% of ovarian cancers on 19p13.3. LKB1 is therefore a candidate tumour suppressor gene for sporadic ovarian tumours. We found allele loss at the marker D19S886 (19p13.3) in 12 of 49 (24%) sporadic ovarian adenocarcinomas. Using SSCP analysis, we screened ten ovarian cancers with LOH, 35 other ovarian cancers and 12 granulosa cell tumours of the ovary for somatic mutations in LKB1. No variants were detected in any of the adenocarcinomas. Two mutations were detected in one of the granulosa cell tumours: a mis-sense mutation affecting the putative 'start' codon (ATG --> ACG, M1T); and a silent change in exon 7 (CTT --> CTA, leucine). Like BRCA1 and BRCA2, therefore, it appears that LKB1 mutations can cause ovarian tumours when present in the germline, but occur rarely in the soma. The allele loss on 19p13.3 in ovarian cancers almost certainly targets a different gene from LKB1

    Observation of surface gap solitons in semi-infinite waveguide arrays

    Get PDF
    We report on the first observation of surface gap solitons, recently predicted to exist at the interface between uniform and periodic dielectric media with defocusing nonlinearity [Ya.V. Kartashov et al., Phys. Rev. Lett. 96, 073901 (2006). We demonstrate strong self-trapping at the edge of a LiNbO_3 waveguide array and the formation of staggered surface solitons with propagation constant inside the first photonic band gap. We study the crossover between linear repulsion and nonlinear attraction at the surface, revealing the mechanism of nonlinearity-mediated stabilization of the surface gap modes.Comment: 4 pages, 5 figure

    A novel selective 11β-hydroxysteroid dehydrogenase type 1 inhibitor prevents human adipogenesis

    Get PDF
    Glucocorticoid excess increases fat mass, preferentially within omental depots; yet circulating cortisol concentrations are normal in most patients with metabolic syndrome (MS). At a pre-receptor level, 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activates cortisol from cortisone locally within adipose tissue, and inhibition of 11β-HSD1 in liver and adipose tissue has been proposed as a novel therapy to treat MS by reducing hepatic glucose output and adiposity. Using a transformed human subcutaneous preadipocyte cell line (Chub-S7) and human primary preadipocytes, we have defined the role of glucocorticoids and 11β-HSD1 in regulating adipose tissue differentiation. Human cells were differentiated with 1·0 μM cortisol (F), or cortisone (E) with or without 100 nM of a highly selective 11β-HSD1 inhibitor PF-877423. 11β-HSD1 mRNA expression increased across adipocyte differentiation (P<0·001, n=4), which was paralleled by an increase in 11β-HSD1 oxo-reductase activity (from nil on day 0 to 5·9±1.9 pmol/mg per h on day 16, P<0·01, n=7). Cortisone enhanced adipocyte differentiation; fatty acid-binding protein 4 expression increased 312-fold (P<0·001) and glycerol-3-phosphate dehydrogenase 47-fold (P<0·001) versus controls. This was abolished by co-incubation with PF-877423. In addition, cellular lipid content decreased significantly. These findings were confirmed in the primary cultures of human subcutaneous preadipocytes. The increase in 11β-HSD1 mRNA expression and activity is essential for the induction of human adipogenesis. Blocking adipogenesis with a novel and specific 11β-HSD1 inhibitor may represent a novel approach to treat obesity in patients with MS

    Trapped ions in optical lattices for probing oscillator chain models

    Full text link
    We show that a chain of trapped ions embedded in microtraps generated by an optical lattice can be used to study oscillator models related to dry friction and energy transport. Numerical calculations with realistic experimental parameters demonstrate that both static and dynamic properties of the ion chain change significantly as the optical lattice power is varied. Finally, we lay out an experimental scheme to use the spin degree of freedom to probe the phase space structure and quantum critical behavior of the ion chain

    CDX2 mutations do not account for juvenile polyposis or Peutz–Jeghers syndrome and occur infrequently in sporadic colorectal cancers

    Get PDF
    Peutz–Jeghers syndrome (PJS) and juvenile polyposis (JPS) are both characterized by the presence of hamartomatous polyps and increased risk of malignancy in the gastrointestinal tract. Mutations of the LKB1 and SMAD4 genes have been shown recently to cause a number of PJS and JPS cases respectively, but there remains considerable uncharacterized genetic heterogeneity in these syndromes, particularly JPS. The mouse homologue of CDX2 has been shown to give rise to a phenotype which includes hamartomatous-like polyps in the colon and is therefore a good candidate for JPS and PJS cases which are not accounted for by the SMAD4 and LKB1 genes. By analogy with SMAD4CDX2 is also a candidate for somatic mutation in sporadic colorectal cancer. We have screened 37 JPS families/cases without known SMAD4 mutations, 10 Peutz-Jeghers cases without known LKB1 mutations and 49 sporadic colorectal cancers for mutations in CDX2. Although polymorphic variants and rare variants of unlikely significance were detected, no pathogenic CDX2 mutations were found in any case of JPS or PJS, or in any of the sporadic cancers. © 2001 Cancer Research Campaign www.bjcancer.co

    11 beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle

    Get PDF
    OBJECTIVE: Glucocorticoid excess is characterized by increased adiposity, skeletal myopathy, and insulin resistance, but the precise molecular mechanisms are unknown. Within skeletal muscle, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone (11-dehydrocorticosterone in rodents) to active cortisol (corticosterone in rodents). We aimed to determine the mechanisms underpinning glucocorticoid-induced insulin resistance in skeletal muscle and indentify how 11beta-HSD1 inhibitors improve insulin sensitivity. \ud RESEARCH DESIGN AND METHODS: Rodent and human cell cultures, whole-tissue explants, and animal models were used to determine the impact of glucocorticoids and selective 11beta-HSD1 inhibition upon insulin signaling and action. \ud RESULTS: Dexamethasone decreased insulin-stimulated glucose uptake, decreased IRS1 mRNA and protein expression, and increased inactivating pSer307^{307} insulin receptor substrate (IRS)-1. 11beta-HSD1 activity and expression were observed in human and rodent myotubes and muscle explants. Activity was predominantly oxo-reductase, generating active glucocorticoid. A1 (selective 11beta-HSD1 inhibitor) abolished enzyme activity and blocked the increase in pSer307^{307} IRS1 and reduction in total IRS1 protein after treatment with 11DHC but not corticosterone. In C57Bl6/J mice, the selective 11beta-HSD1 inhibitor, A2, decreased fasting blood glucose levels and improved insulin sensitivity. In KK mice treated with A2, skeletal muscle pSer307^{307} IRS1 decreased and pThr308^{308} Akt/PKB increased. In addition, A2 decreased both lipogenic and lipolytic gene expression.\ud CONCLUSIONS: Prereceptor facilitation of glucocorticoid action via 11beta-HSD1 increases pSer307^{307} IRS1 and may be crucial in mediating insulin resistance in skeletal muscle. Selective 11beta-HSD1 inhibition decreases pSer307^{307} IRS1, increases pThr308^{308} Akt/PKB, and decreases lipogenic and lipolytic gene expression that may represent an important mechanism underpinning their insulin-sensitizing action

    Dual-5α-Reductase Inhibition Promotes Hepatic Lipid Accumulation in Man

    Get PDF
    Context: 5α-Reductase 1 and 2 (SRD5A1, SRD5A2) inactivate cortisol to 5α-dihydrocortisol in addition to their role in the generation of DHT. Dutasteride (dual SRD5A1 and SRD5A2 inhibitor) and finasteride (selective SRD5A2 inhibitor) are commonly prescribed, but their potential metabolic effects have only recently been identified. Objective: Our objective was to provide a detailed assessment of the metabolic effects of SRD5A inhibition and in particular the impact on hepatic lipid metabolism. Design: We conducted a randomized study in 12 healthy male volunteers with detailed metabolic phenotyping performed before and after a 3-week treatment with finasteride (5 mg od) or dutasteride (0.5 mg od). Hepatic magnetic resonance spectroscopy (MRS) and two-step hyperinsulinemic euglycemic clamps incorporating stable isotopes with concomitant adipose tissue microdialysis were used to evaluate carbohydrate and lipid flux. Analysis of the serum metabolome was performed using ultra-HPLC-mass spectrometry. Setting: The study was performed in the Wellcome Trust Clinical Research Facility, Queen Elizabeth Hospital, Birmingham, United Kingdom. Main Outcome Measure: Incorporation of hepatic lipid was measured with MRS. Results: Dutasteride, not finasteride, increased hepatic insulin resistance. Intrahepatic lipid increased on MRS after dutasteride treatment and was associated with increased rates of de novo lipogenesis. Adipose tissue lipid mobilization was decreased by dutasteride. Analysis of the serum metabolome demonstrated that in the fasted state, dutasteride had a significant effect on lipid metabolism. Conclusions: Dual-SRD5A inhibition with dutasteride is associated with increased intrahepatic lipid accumulation. - See more at: http://press.endocrine.org/doi/10.1210/jc.2015-2928#sthash.KmmY91Iw.dpu
    corecore