10 research outputs found

    An overview on single nucleotide polymorphism studies in mastitis research

    Get PDF
    Mastitis is an inflammatory condition of the mammary gland caused by microorganisms as diverse as bacteria, viruses, mycoplasma, yeasts and algae. Mastitis is an economically devastating disease mainly affecting the crossbred cattle in India. Control strategies against mastitis includes antibiotic therapy, vaccination, improvements in dairy cattle husbandry, farm and feeding management etc. but has met with little success.. Mastitis tolerance/susceptibility is difficult to measure directly and hence milk somatic cell count (SCC) or milk somatic cell score (SCS) is used as an indicator trait for mastitis as both traits are highly positively correlated. Single nucleotide polymorphism (SNP) marker is a single base change in a DNA sequence at a given position. SNP markers are the most preferred genetic markers nowadays. Currently most researches worldwide have been targeting molecular high density SNP markers that are linked to mastitis tolerance in an attempt to incorporate to understand the genetics of host resistance to mastitis and this knowledge will be helpful in formulating breeding programmes in an attempt to control mastitis. This article reviews various SNPs which are reported to be significantly associated with mastitis tolerance/susceptibility

    Harnessing the antibacterial activity of Quercus infectoria and Phyllanthus emblica against antibiotic-resistant Salmonella Typhi and Salmonella Enteritidis of poultry origin

    Get PDF
    Background and Aim: In a scenario of the ineffectiveness of the current drugs against antibiotic-resistant pathogens, the herbal extracts can serve as an alternative remedy. This study appraises the antibacterial potency of Quercus infectoria (gall), Phyllanthus emblica (fruit) individually and synergistically against antimicrobial-resistant (AMR) Salmonella Typhi and Salmonella Enteritidis in a time and dose-dependent manner. Further, the antibacterial phytocompounds were identified employing gas chromatography-mass spectrometry (GC-MS). Materials and Methods: Preliminary antibacterial activity of the plant extracts was assessed using the agar disk diffusion method. In vitro evaluations of Q. infectoria methanolic extract (QIME) and P. emblica methanolic extract (PEME) against S. Typhi and S. Enteritidis were carried out using plate count method. Results: QIME and PEME at a dose rate of 50 mg/ml and 25 mg/ml, respectively, had a complete bactericidal effect on AMR S. Typhi and S. Enteritidis whereas 10 log10 CFU/ml of exponential growth was seen in untreated control groups. At the lower concentrations, QIME and PEME had a significant bacteriostatic effect (3-6 log10 reduction of the test isolates). The synergistic antibacterial effect obtained from the combination of these two plant extracts at 12.5 mg/ml was superior (p<0.001) than the individual treatments. Phytochemical profiling indicated the presence of tannins, flavonoids, saponins, and terpenoids in both the plant extracts. GC-MS analysis of QIME and PEME revealed the presence of 16 and 15 antibacterial phytocompounds, respectively. Further 1, 2, 3 Benzenetriol was found as the prominent active principle. Conclusion: The findings validate that QIME and PEME are potential antibacterial agents against AMR S. Typhi, S. Enteritidis and can play a promising role in antimicrobial packaging, poultry feed additives and can also serve as a platform for formulating effective phytotherapeutics

    Isolation and identification of Salmonella from diarrheagenic infants and young animals, sewage waste and fresh vegetables

    Get PDF
    Abstract Aim: This study was carried out to determine the prevalence, distribution, and identification of Salmonella serotypes in diarrheagenic infants and young animals, including sewage waste and fresh vegetables. Materials and Methods

    Isolation and identification of Salmonella from diarrheagenic infants and young animals, sewage waste and fresh vegetables

    No full text
    Aim: This study was carried out to determine the prevalence, distribution, and identification of Salmonella serotypes in diarrheagenic infants and young animals, including sewage waste and fresh vegetables. Materials and Methods: A total of 550 samples were processed for the isolation of Salmonella spp., using standard microbiological and biochemical tests. Further polymerase chain reaction (PCR) detection of Salmonella genus was carried out using self-designed primers targeting invA gene and thereafter identification of important serotypes namely Salmonella Enterica serovar Typhimurium, Salmonella Enterica serovar Enteritidis, Salmonella Enterica serovar Typhi was performed using published standardized multiplex PCR. Results: An overall low prevalence of 2.5% (14/550) was observed. The observed prevalence of Salmonella spp. in diarrheagenic infants was 1.2% (05/400), diarrheagenic young animals 4% (02/50), sewage waste 10% (05/50), and fresh vegetables 4% (02/50), respectively. In diarrheagenic infants, of the five Salmonella isolates identified, two were Salmonella Typhimurium, two Salmonella Enteritidis, and one was unidentified and hence designated as other Salmonella serovar. All the Salmonella isolates identified from diarrheagenic young animals and sewage waste belonged to other Salmonella serovar, whereas, of the two isolates recovered from fresh vegetables, one was identified as other Salmonella serovar, and one as Salmonella Typhimurium, respectively. Conclusion: Isolation of Salmonella spp. especially from sewage waste and fresh vegetable is a matter of great concern from public health point of view because these sources can accidentally serve as a potential vehicle for transmission of Salmonella spp. to animals and human beings

    Genetic diversity and antibiogram profile of diarrhoeagenic Escherichia coli pathotypes isolated from human, animal, foods and associated environmental sources

    No full text
    Introduction: Infectious diarrhoea particularly due to pathogenic bacteria is a major health problem in developing countries, including India. Despite significant reports of diarrhoeagenic Escherichia coli (DEC) pathotypes around the globe, studies which address genetic relatedness, antibiogram profile and their correlation with respect to their isolation from different sources are sparse. The present study determines isolation and identification of DEC pathotypes from different sources, their genetic characterisation, antibiogram profile and their correlation if any. Materials and methods: A total of 336 samples comprising diarrhoeic stool samples from infants (n=103), young animal (n=106), foods (n=68) and associated environmental sources (n=59) were collected from Bareilly region of India. All the samples were screened by using standard microbiological methods for the detection of E. coli. The identified E. coli were then confirmed as DEC pathotypes using polymerase chain reaction–based assays. Those DEC pathotypes identified as Enteroaggregative E. coli (EAEC) were further confirmed using HEp-2 adherence assay. All the isolated DEC pathotypes were studied for their genetic diversity using pulsed-field gel electrophoresis (PFGE), and antimicrobial susceptibility testing was performed by using disc diffusion method as per Clinical Laboratory Standards Institute guidelines. Results and discussion: Of the four DEC pathotypes investigated, EAEC was found to be the predominant pathogen with an isolation rate of 16.5% from infants, 17.9% from young animals, 16.2% from foods and 3.4% from the associated environmental sources. These EAEC isolates, on further characterisation, revealed predominance of ‘atypical’ EAEC, with an isolation rate of 10.7% from infants, 15.1% from young animals, 16.2% from foods, and 3.4% from the associated environmental sources. On PFGE analysis, discrimination was evident within DEC pathotypes as 52 unique pulsotypes were observed for 59 recovered DEC pathotypes. However, a few EAEC isolates were found to be clonal (clusters A, B, C, D, F, G, and H) irrespective of their source of isolation, suggests sharing and/or circulation among different sources. Further, a high antibiotic resistance pattern was observed among isolated DEC pathotypes as almost 86.4% of isolates were found to be resistant against ≥3 tested drugs
    corecore