21 research outputs found

    Project of Optimal Amortization Scheme of Fixed Assets in Company ABC, a.s.

    Get PDF
    Bakalářská práce řeší problematiku hospodaření s dlouhodobým majetkem ve společnosti ABC, a.s. a porovnává dlouhodobý majetek podle českých účetních předpisů a Mezinárodních standardů finančního výkaznictví. Práce vychází ze současného stavu ve společnosti a obsahuje návrh optimálního odpisového plánu dlouhodobého majetku ve společnosti ABC, a.s.Bachelor´s thesis deals with problems of economy of Fixed Assets in Company ABC, a.s. and compares Fixed Assets under Czech Accounting Standards and under International financial Reporting Standards. The Work is coming out from present state of the property in the Company and includes a proposal of optimal depreciation Scheme of Fixed Assets in Company ABC, a.s.

    Project of Methodology of a Risk Evaluation for the Risk Reporting Purposes in Accordance with IFRS/IAS

    Get PDF
    Diplomová práce se zabývá metodikou hodnocení rizika pro účely jeho zveřejňování v souladu s IFRS/IAS, konkrétně pro standard IFRS 8 – Provozní segmenty. V práci jsou vysvětleny důsledky změn a výhody přechodu na Mezinárodní standardy finančního výkaznictví a dále je rozebráno jak tento přechod a změny budou provedeny. V závěru práce je navržen jeden z možných přístupů k modelování a hodnocení rizik ve vztahu k procesnímu řízení v různých typech podniků.The diploma thesis is focused on of its presentation in accordance with IFRS/IAS, respectively, for the fulfilling the requirements of IFRS 8 – Operational Segments. In this diploma thesis, the effects and advantages of financial statements transformation on IFRS/IAS are explained. Process of this transformation all its consequences are also elaborated here. For the conclusion, possible approaches to modelling of risk and to risk measurement are suggested here.

    Indium-bearing paragenesis from the Nueva Esperanza and Restauradora veins, Capillitas mine, Argentina

    Get PDF
    The Nueva Esperanza and Restauradora are two of the twenty-three veins described at Capillitas mine, an epithermal precious-and base-metal vein deposit located in northern Argentina. Capillitas is genetically linked to other minera-lizations of the Farallón Negro Volcanic Complex, which hosts several deposits. These include two world-class (La Alumbrera and Agua Rica) and some smaller (e.g., Bajo El Durazno) porphyry deposits, and a few epithermal deposits (Farallón Negro, Alto de la Blenda, Cerro Atajo and Capillitas). The main hypogene minerals found at these two veins include pyrite, sphalerite, galena, chalcopyrite, tennantite-(Zn) and tennantite-(Fe). Accessory minerals comprise hübnerite, gold, silver, stannite, stannoidite and mawsonite, and also diverse indium-and tellurium-bearing minerals. Quartz is the main gangue mineral. Indium participates in the structure of sphalerite, tennantite-(Zn), ishiharaite and an indium-bearing mineral, still under study, the former being the most abundant of these phases. The chemical composition of sphalerite shows very low concentrations of Fe and a wide range in indium contents from below the detection limit (0.03 wt. %) to values close to 22 wt. %. Atomic proportions of In and Cu correlate positively at a ratio In: Cu = 1: 1 atoms per formula unit. Cadmium reaches up to 0.68 wt. %. Other analyzed elements (Ge, As, Se, Ag, Sn, Te, Au, Pb and Bi) are systematically below their respective detection limits. Indium-bearing tennantite-(Zn) (up to 0.24 wt. % In) is rare and restricted to the area where ishiharaite appears. Ishiharaite and the unclassified indium-bearing mineral are extremely scarce and host up to 10 and 30 wt. % In, respectively. The zoning in sphalerite and the variable indium content of the different bands could be ascribed to significant fluctuation in the composition of the fluids (possibly pulses). They are evidenced by the presence of a high f Te2 mineral, like calaverite, and a low f Te2 phase, such as silver, within the same stage, with local periodic increments on In and Cu that could also be associated with recurring reactivation of fractures.Fil: Marquez Zavalia, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Vymazalová, Anna. Czech Geological Survey; República ChecaFil: Galliski, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Watanabe, Yasushi. Mining Museum of Akita University; JapónFil: Murakami, Hiroyasu. No especifíca

    Platinum-group elements (PGE) and their principal carriers in metal-rich black shales : An overview with a new data from Mo-Ni-PGE black shales (Zunyi region, Guizhou Province, south China)

    No full text
    Lower Cambrian Mo–Ni sulfidic black shales from the Huangjiawan mine (Guizhou Province, south China) have anomalousplatinum-group elements (PGE) concentrations (up to ~1 ppm in total). In order to identify principal PGE carriers,we used heavy mineral separates which were produced by innovative hydroseparation techniques. Subsequent detailedmineralogical study using electron microprobe did not result in the identification of discrete platinum-group minerals.Pyrite (grainy, not framboidal), millerite and gersdorffite that were found in our heavy concentrate were analyzed forPGE and Re. We found that they contain the following concentrations of PGE and Re: pyrite (up to 490 ppm Pt, 390ppm Pd and 220 ppm Rh), millerite (up to 530 ppm Pt, 430 ppm Pd and 190 ppm Rh) and gersdorffite (up to 410 ppmPt and 320 ppm Pd; no Rh detected). Rhenium was detected only in grainy pyrite (up to 1060 ppm). It was found thatdespite anomalous PGE concentrations, the Mo–Ni black shales do not contain any platinum-group minerals and thatthe PGE are bound to pyrite and Ni-sulfides (millerite and gersdorffite)

    Geochemistry and mineralogy of platinum-group elements (PGE) in chromites from Centralnoye I, Polar Urals, Russia

    Get PDF
    The Polar Urals region of northern Russia is well known for large chromium (Cr)-bearing massifs with major chromite orebodies, including the Centralnoye I deposit in the Ray-Iz ultramafic massif of the Ural ophiolite belt. New data on platinum (Pt)-group elements (PGE), geochemistry and mineralogy of the host dunite shows that the deposit has anomalous iridium (Ir) values. These values indicate the predominance of ruthenium–osmium–iridium (Ru–Os–Ir)-bearing phases among the platinum-group mineral (PGM) assemblage that is typical of mantle-hosted chromite ores. Low Pt values in chromites and increased Pt values in host dunites might reflect the presence of cumulus PGM grains. The most abundant PGM found in the chromite is erlichmanite (up to 15 μm). Less common are cuproiridsite (up to 5 μm), irarsite (up to 4–5 μm), and laurite (up to 4 μm). The predominant sulfide is heazlewoodite, in intergrowth with Ni–Fe alloys, sporadically with pentlandite, and rarely with pure nickel. Based on the average PGE values and estimated Cr-ore resources, the Centralnoye I deposit can be considered as an important resource of PGE

    Kitagohaite, Pt7Cu, a new mineral from the Lubero region, North Kivu, democratic Republic of the Congo

    No full text
    Kitagohaite, ideally Pt7Cu, is a new mineral from the Lubero region of North Kivu, emocratic Republic of the Congo. The mineral occurs as alluvial grains that were recovered together with other Pt-rich intermetallic compounds and Au. Kitagohaite is opaque, greyish white and malleable and has a metallic lustre and a grey streak. In reflected light, kitagohaite is white and isotropic. The crystal structure of kitagohaite is cubic, space group Fm3̄m, of the Ca7Ge type, with a = 7.7891(3) Å, V = 472.57(5) Å 3 and Z = 4. The strongest diffraction lines [d in Å (I)(hkl)] are: 2.246 (100)(222), 1.948(8)(004), 1.377 (77)(044), 1.174(27)(622), 1.123 (31)(444) and 0.893 (13)(662). The Vickers hardness is 217 kg mm-2 (VHN100), which is equivalent to a Mohs hardness of 31/2 and the calculated density is 19.958(2) g cm-3. Electron-microprobe analyses gave a mean value (n = 13) of 95.49 wt.% Pt and 4.78 wt.% Cu, which corresponds to Pt6.93Cu1.07 on the basis of eight atoms. The new mineral is named for the Kitagoha river, in the Lubero region. ©2014 The Mineralogical Society.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore