4 research outputs found

    Recent genetic connectivity and clinal variation in chimpanzees.

    Get PDF
    Funder: Max-Planck-Gesellschaft (Max Planck Society); doi: https://doi.org/10.13039/501100004189Funder: Max Planck Society Innovation Fund Heinz L. Krekeler FoundationMuch like humans, chimpanzees occupy diverse habitats and exhibit extensive behavioural variability. However, chimpanzees are recognized as a discontinuous species, with four subspecies separated by historical geographic barriers. Nevertheless, their range-wide degree of genetic connectivity remains poorly resolved, mainly due to sampling limitations. By analyzing a geographically comprehensive sample set amplified at microsatellite markers that inform recent population history, we found that isolation by distance explains most of the range-wide genetic structure of chimpanzees. Furthermore, we did not identify spatial discontinuities corresponding with the recognized subspecies, suggesting that some of the subspecies-delineating geographic barriers were recently permeable to gene flow. Substantial range-wide genetic connectivity is consistent with the hypothesis that behavioural flexibility is a salient driver of chimpanzee responses to changing environmental conditions. Finally, our observation of strong local differentiation associated with recent anthropogenic pressures portends future loss of critical genetic diversity if habitat fragmentation and population isolation continue unabated

    Mammal mitogenomics from invertebrate‐derived <scp>DNA</scp>

    Get PDF
    The metabarcoding of vertebrate DNA found in invertebrate-derived DNA (iDNA) has proven a powerful tool for monitoring biodiversity. To date, iDNA has primarily been used to detect the presence/absence of particular taxa using metabarcoding, though recent efforts demonstrated the potential utility of these data for estimating relative animal abundance. Here, we test whether iDNA can also be used to reconstruct complete mammalian mitogenomes and therefore bring the field closer to population-level analyses. Specifically, we used mitogenomic hybridization capture coupled with high-throughput sequencing to analyze individual (N = 7) or pooled (N = 5) fly-derived DNA extracts, and individual (N = 7) or pooled (N = 1) leech-derived DNA extracts, which were known a priori to contain primate DNA. All sources of iDNA showed their ability to generate large amounts of mammalian mitogenomic information and deeper sequencing of libraries is predicted to allow for even more complete recovery of primate mitogenomes from most samples (90%). Sixty percent of these iDNA extracts allowed for the recovery of (near) complete mammalian mitochondrial genomes (hereafter mitogenomes) that proved useable for phylogenomic analyses. These findings contribute to paving the way for iDNA-based population mitogenomic studies of terrestrial mammals

    Recent genetic connectivity and clinal variation in chimpanzees

    No full text
    AbstractMuch like humans, chimpanzees occupy diverse habitats and exhibit extensive behavioural variability. However, chimpanzees are recognized as a discontinuous species, with four subspecies separated by historical geographic barriers. Nevertheless, their range-wide degree of genetic connectivity remains poorly resolved, mainly due to sampling limitations. By analyzing a geographically comprehensive sample set amplified at microsatellite markers that inform recent population history, we found that isolation by distance explains most of the range-wide genetic structure of chimpanzees. Furthermore, we did not identify spatial discontinuities corresponding with the recognized subspecies, suggesting that some of the subspecies-delineating geographic barriers were recently permeable to gene flow. Substantial range-wide genetic connectivity is consistent with the hypothesis that behavioural flexibility is a salient driver of chimpanzee responses to changing environmental conditions. Finally, our observation of strong local differentiation associated with recent anthropogenic pressures portends future loss of critical genetic diversity if habitat fragmentation and population isolation continue unabated.</jats:p
    corecore