8 research outputs found
An in vivo study into the metabolic reprogramming of hepatocellular carcinoma
Die vorliegende Arbeit untersucht die Rolle des Metabolismus in der Entstehung und Progression des Hepatozellulären Karzinoms (HZK). Der Schwerpunkt der Studie liegt auf Veränderungen zentraler Stoffwechselwege, unter anderem der Glykolyse, der Gluconeogenese, des Citratzyklus und anderer Prozesse des Zellstoffwechsels. Umfassende Multiomikanalysen, wie etwa Proteomik, Metabolomik und gezielte Genomsequenzierung wurden angewandt, um in vivo die Mechanismen der HZK Entstehung zu verstehen. Es wurden zwei Systeme untersucht: das ASV-B Mausmodell und klinische Patientenproben. Die Kohorte bestehend aus Biopsien und Resektaten von 95 Patienten umfasste 47 Fälle von HZK und 48 Fälle ohne HZK.
Das Proteom des Mausmodells und der Patientenkohorte zeigen eine deutliche Herabregulierung wesentlicher Energie bereitstellender Kreisläufe im HZK: Glykogenstoffwechsel, de novo Synthese von Glukose, Glutaminaufnahme in den Citratzyklus, des weiteren sind 60% der Enzyme des Citratzyklus, und des Transports von Pyruvat in Mitochondrien im HZK herabreguliert. In dieser Arbeit wurde ein Isoformenwechsel auf mehreren Ebenen des zentralen Kohlenstoffmetabolismus gezeigt. Sowohl das Mausmodell, als auch die Gewebeproben von HZK-Patienten weisen Isoformenwechsel der Phosphoglyzeratmutasen und der Pyruvatkinasen auf. Die Hauptmerkmale finden sich sowohl in Modellmäusen, als auch in Patienten, und stellen so einen universalen metabolomischen Fingerabdruck des HZK dar. Darüber hinaus demonstriert diese Studie, dass die Proteomanalyse von bioptischen Material ein aussagekräftiges und ausreichendes molekular-diagnostisches Instrument für die Krebsforschung ist: die Proteomanalyse von Lebermaterial erlaubt die Unterscheidung von Tumorgewebe und tumorfreien Proben und die Dokumentation des Krankheitsverlaufs.The present work evaluates the role of metabolism in development and progression of hepatocellular carcinoma (HCC). This study focuses on changes of central metabolic pathways, including glycolysis, gluconeogenesis, tricarboxylic acid (TCA) cycle and other processes involved in cellular metabolism and known to be dysregulated during cancer formation. Comprehensive multiomics analyses, such as proteomics, metabolomics and targeted genome sequencing, were applied in order to better understand HCC developmental mechanisms in vivo. Two main systems were studied: the ASV-B mouse model and clinical samples from human patients. The human cohort was composed of biopsy and surgery material from 95 patients: 47 HCC and 48 non-HCC.
Proteomic data from both mice and humans show a clear downregulation of the main energy-producing pathways in HCC. Glycogen metabolism, de novo glucose synthesis, glutamine uptake to the TCA cycle, approximately 60% of enzymes of TCA cycle, and transport of pyruvate to mitochondria are downregulated in HCC. An isoform switch at various levels of central carbon metabolism was demonstrated in this work. Both mice and humans with HCC reveal isoform switches at the level of phosphoglycerate mutases and pyruvate kinases. The key features are found in both mouse and human, showing a universal metabolic HCC fingerprint. This study also demonstrates that proteomic analysis of the bioptate material is a strong and sufficient molecular diagnostic tool for research in cancer: the proteomic analysis of liver material allows the distinction of tumor samples from non-tumor samples and also to track the level of disease progression.
Targeted genome sequencing revealed that no clear distinction between cancer and precancerous conditions could be made exclusively from the mutation analysis. Human metabolomic data remains inconclusive, possibly due to the different sources of tissue samples
Klinická lipidomika – komunitně orientovaná mapa k převedení výzkumu do klinických aplikací
Lipid metabolites, beyond triglycerides and cholesterol, have been shown to have vast potential for applications in clinical applications, with substantial societal and economical value. To successfully evolve from the current research-grade methods to assays suitable for routine clinical applications, a harmonization - if not standardization - of these mass spectrometry-based workflows is necessary. Input on clinical needs and technological capabilities must be obtained from all relevant stakeholders, including wet lab scientists, informaticians and data scientists, manufacturers, and medical professionals. In order to build bridges between this diverse group of professionals, the International Lipidomics Society and its Clinical Lipidomics Interest Group were created. This opinion article is intended to provide an overview of international efforts to tackle the issues of workflow harmonization, and to serve as an open invitation for others to join this growing community.Ukázalo se, že kromě triacylglycerolů a cholesterolu mají lipidové metabolity obrovský potenciál pro použití v klinických aplikacích. K úspěšnému vývoji od současných metod výzkumných stupňů k testům vhodným pro běžné klinické aplikace je nutná harmonizace těchto pracovních postupů založených na hmotnostní spektrometrii. Informace o klinických potřebách a technologických schopnostech musí být získány od všech příslušných zúčastněných stran, včetně vědců v laboratořích, informatiků a datových vědců, výrobců a zdravotnických odborníků. Za účelem vybudování mostů mezi touto různorodou skupinou profesionálů vznikla Mezinárodní lipidomická společnost a její zájmová skupina Klinická lipidomika. Tento článek má poskytnout přehled o řešení problematiky harmonizace pracovních postupů a sloužit jako otevřená výzva pro ostatní, aby se připojili k této rozrůstající se komunitě
Shotgun Lipidomics Combined with Laser Capture Microdissection: A Tool To Analyze Histological Zones in Cryosections of Tissues
Shotgun
analysis provides a quantitative snapshot of the lipidome
composition of cells, tissues, or model organisms; however, it does
not elucidate the spatial distribution of lipids. Here we demonstrate
that shotgun analysis could quantify low-picomole amounts of lipids
isolated by laser capture microdissection (LCM) of hundred micrometer-sized
histological zones visualized at the cryosections of tissues. We identified
metabolically distinct periportal (pp) and pericentral (pc) zones
by immunostaining of 20 μm thick cryosections of a healthy mouse
liver. LCM was used to ablate, catapult, and collect the tissue material
from 10 to 20 individual zones covering a total area of 0.3–0.5
mm<sup>2</sup> and containing ca. 500 cells. Top-down shotgun profiling
relying upon computational stitching of 61 targeted selective ion
monitoring (<i>t</i>-SIM) spectra quantified more than 200
lipid species from 17 lipid classes including glycero- and glycerophospholipids,
sphingolipids, cholesterol esters, and cholesterol. Shotgun LCM revealed
the overall commonality of the full lipidome composition of pp and
pc zones along with significant (<i>p</i> < 0.001) difference
in the relative abundance of 13 lipid species. Follow-up proteomics
analyses of pellets recovered from an aqueous phase saved after the
lipid extraction identified 13 known and 7 new protein markers exclusively
present in pp or in pc zones and independently validated the specificity
of their visualization, isolation, and histological assignment
Shotgun Lipidomics Combined with Laser Capture Microdissection: A Tool To Analyze Histological Zones in Cryosections of Tissues
Shotgun
analysis provides a quantitative snapshot of the lipidome
composition of cells, tissues, or model organisms; however, it does
not elucidate the spatial distribution of lipids. Here we demonstrate
that shotgun analysis could quantify low-picomole amounts of lipids
isolated by laser capture microdissection (LCM) of hundred micrometer-sized
histological zones visualized at the cryosections of tissues. We identified
metabolically distinct periportal (pp) and pericentral (pc) zones
by immunostaining of 20 μm thick cryosections of a healthy mouse
liver. LCM was used to ablate, catapult, and collect the tissue material
from 10 to 20 individual zones covering a total area of 0.3–0.5
mm<sup>2</sup> and containing ca. 500 cells. Top-down shotgun profiling
relying upon computational stitching of 61 targeted selective ion
monitoring (<i>t</i>-SIM) spectra quantified more than 200
lipid species from 17 lipid classes including glycero- and glycerophospholipids,
sphingolipids, cholesterol esters, and cholesterol. Shotgun LCM revealed
the overall commonality of the full lipidome composition of pp and
pc zones along with significant (<i>p</i> < 0.001) difference
in the relative abundance of 13 lipid species. Follow-up proteomics
analyses of pellets recovered from an aqueous phase saved after the
lipid extraction identified 13 known and 7 new protein markers exclusively
present in pp or in pc zones and independently validated the specificity
of their visualization, isolation, and histological assignment
Shotgun Lipidomics Combined with Laser Capture Microdissection: A Tool To Analyze Histological Zones in Cryosections of Tissues
Shotgun
analysis provides a quantitative snapshot of the lipidome
composition of cells, tissues, or model organisms; however, it does
not elucidate the spatial distribution of lipids. Here we demonstrate
that shotgun analysis could quantify low-picomole amounts of lipids
isolated by laser capture microdissection (LCM) of hundred micrometer-sized
histological zones visualized at the cryosections of tissues. We identified
metabolically distinct periportal (pp) and pericentral (pc) zones
by immunostaining of 20 μm thick cryosections of a healthy mouse
liver. LCM was used to ablate, catapult, and collect the tissue material
from 10 to 20 individual zones covering a total area of 0.3–0.5
mm<sup>2</sup> and containing ca. 500 cells. Top-down shotgun profiling
relying upon computational stitching of 61 targeted selective ion
monitoring (<i>t</i>-SIM) spectra quantified more than 200
lipid species from 17 lipid classes including glycero- and glycerophospholipids,
sphingolipids, cholesterol esters, and cholesterol. Shotgun LCM revealed
the overall commonality of the full lipidome composition of pp and
pc zones along with significant (<i>p</i> < 0.001) difference
in the relative abundance of 13 lipid species. Follow-up proteomics
analyses of pellets recovered from an aqueous phase saved after the
lipid extraction identified 13 known and 7 new protein markers exclusively
present in pp or in pc zones and independently validated the specificity
of their visualization, isolation, and histological assignment
Loss of hepatic Mboat7 leads to liver fibrosis
OBJECTIVE: The rs641738C>T variant located near the membrane-bound O-acyltransferase domain containing 7 (MBOAT7) locus is associated with fibrosis in liver diseases, including non-alcoholic fatty liver disease (NAFLD), alcohol-related liver disease, hepatitis B and C. We aim to understand the mechanism by which the rs641738C>T variant contributes to pathogenesis of NAFLD.
DESIGN: Mice with hepatocyte-specific deletion of MBOAT7 (Mboat7) were generated and livers were characterised by histology, flow cytometry, qPCR, RNA sequencing and lipidomics. We analysed the association of rs641738C>T genotype with liver inflammation and fibrosis in 846 NAFLD patients and obtained genotype-specific liver lipidomes from 280 human biopsies.
RESULTS: Allelic imbalance analysis of heterozygous human liver samples pointed to lower expression of the MBOAT7 transcript on the rs641738C>T haplotype. Mboat7 mice showed spontaneous steatosis characterised by increased hepatic cholesterol ester content after 10 weeks. After 6 weeks on a high fat, methionine-low, choline-deficient diet, mice developed increased hepatic fibrosis as measured by picrosirius staining (pT was associated with fibrosis (p=0.004) independent of the presence of histological inflammation. Liver lipidomes of Mboat7 mice and human rs641738TT carriers with fibrosis showed increased total lysophosphatidylinositol levels. The altered lysophosphatidylinositol and phosphatidylinositol subspecies in MBOAT7 livers and human rs641738TT carriers were similar.
CONCLUSION: Mboat7 deficiency in mice and human points to an inflammation-independent pathway of liver fibrosis that may be mediated by lipid signalling and a potentially targetable treatment option in NAFLD
Salt-responsive gut commensal modulates TH17 axis and disease
A Western lifestyle with high salt consumption can lead to hypertension and cardiovascular disease. High salt may additionally drive autoimmunity by inducing T helper 17 (T(H)17) cells, which can also contribute to hypertension. Induction of T(H)17 cells depends on gut microbiota; however, the effect of salt on the gut microbiome is unknown. Here we show that high salt intake affects the gut microbiome in mice, particularly by depleting Lactobacillus murinus. Consequently, treatment of mice with L. murinus prevented salt-induced aggravation of actively induced experimental autoimmune encephalomyelitis and salt-sensitive hypertension by modulating T(H)17 cells. In line with these findings, a moderate high-salt challenge in a pilot study in humans reduced intestinal survival of Lactobacillus spp., increased T(H)17 cells and increased blood pressure. Our results connect high salt intake to the gut-immune axis and highlight the gut microbiome as a potential therapeutic target to counteract salt-sensitive conditions