8 research outputs found

    Overview of proteomics studies in obstructive sleep apnea

    Get PDF
    Obstructive sleep apnea (OSA) is an underdiagnosed common public health concern causing deleterious effects on metabolic and cardiovascular health. Although much has been learned regarding the pathophysiology and consequences of OSA in the past decades, the molecular mechanisms associated with such processes remain poorly defined. The advanced high-throughput proteomics-based technologies have become a fundamental approach for identifying novel disease mediators as potential diagnostic and therapeutic targets for many diseases, including OSA. Here, we briefly review OSA pathophysiology and the technological advances in proteomics and the first results of its application to address critical issues in the OSA field.Work partially supported by Harvard Medical School – Portugal Program (HMSP-ICJ/0022/2011), Fundação para a Ciência e a Tecnologia (FCT)/Poly-Annual Funding Program and FEDER/Saúde XXI Program (Portugal) and postdoctoral FCT-fellowship (SFRH/BPD/43365/2008)

    Evening and morning peroxiredoxin-2 redox/oligomeric state changes in obstructive sleep apnea red blood cells: Correlation with polysomnographic and metabolic parameters

    Get PDF
    We have examined the effects of Obstructive Sleep Apnea (OSA) on red blood cell (RBC) proteome variation at evening/morning day time to uncover new insights into OSA-induced RBC dysfunction that may lead to OSA manifestations. Dysregulated proteins mainly fall in the group of catalytic enzymes, stress response and redox regulators such as peroxiredoxin 2 (PRDX2). Validation assays confirmed that at morning the monomeric/dimeric forms of PRDX2 were more overoxidized in OSA RBC compared to evening samples. Six month of positive airway pressure (PAP) treatment decreased this overoxidation and generated multimeric overoxidized forms associated with chaperone/transduction signaling activity of PRDX2. Morning levels of overoxidized PRDX2 correlated with polysomnographic (PSG)-arousal index and metabolic parameters whereas the evening level of disulfide-linked dimer (associated with peroxidase activity of PRDX2) correlated with PSG parameters. After treatment, morning overoxidized multimer of PRDX2 negatively correlated with fasting glucose and dopamine levels. Overall, these data point toward severe oxidative stress and altered antioxidant homeostasis in OSA RBC occurring mainly at morning time but with consequences till evening. The beneficial effect of PAP involves modulation of the redox/oligomeric state of PRDX2, whose mechanism and associated chaperone/transduction signaling functions deserves further investigation. RBC PRDX2 is a promising candidate biomarker for OSA severity and treatment monitoring, warranting further investigation and validation.Project partially supported by Harvard Medical School-Portugal Program (HMSPICJ/0022/2011), ToxOmics - Centre for Toxicogenomics and Human Health (FCT-UID/BIM/00009/2013), FCT/Poly-Annual Funding Program and FEDER/Saúde XXI Program (Portugal) and postdoctoral fellowship (SFRH/BPD/43365/2008) of Fundação para a Ciência e a Tecnologia (FCT), Portugal.info:eu-repo/semantics/publishedVersio

    Effects of occupational exposure to tobacco smoke: is there a link between environmental exposure and disease?

    No full text
    In a previous study, evidence was provided that indoor secondhand tobacco smoke (SHS) air pollution remains high in Lisbon restaurants where smoking is allowed, regardless of the protective measures used. The aim of this study was to determine in these locations the levels of polycyclic aromatic hydrocarbons (PAH) associated with the particulate phase of SHS (PPAH), a fraction that contains recognized carginogens, such as benzo[a]pyrene (BaP). Data showed that restaurant smoking areas might contain PPAH levels as high as 110 ng/m(3), a value significantly higher than that estimated for nonsmoking areas (30 ng/m(3)) or smoke-free restaurants (22 ng/m(3)). The effective exposure to SHS components in restaurant smoking rooms was confirmed as cotinine levels found in workers' urine. Considering that all workers exhibited normal lung function, eventual molecular changes in blood that might be associated with occupational exposure to SHS and SHS-associated PPAH were investigated by measurement of two oxidative markers, total antioxidant status (TAS) and 8-hydroxyguanosine (8-OHdG) in plasma and serum, respectively. SHS-exposed workers exhibited higher mean levels of serum 8-OHdG than nonexposed workers, regardless of smoking status. By using a proteomics approach based on 2D-DIGE-MS, it was possible to identify nine differentially expressed proteins in the plasma of SHS-exposed nonsmoker workers. Two acute-phase inflammation proteins, ceruloplasmin and inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4), were predominant. These two proteins presented a high number of isoforms modulated by SHS exposure with the high-molecular-weight (high-MW) isoforms decreased in abundance while low-MW isoforms were increased in abundance. Whether these expression profiles are due to (1) a specific proteolytic cleavage, (2) a change on protein stability, or (3) alterations on post-translational modification pattern of these proteins remains to be investigated. Considering that these events seem to precede the first symptoms of tobacco-related diseases, our findings might contribute to elucidation of early SHS-induced pathogenic mechanisms and constitute a useful tool for monitoring the effects of SHS on occupationally exposed individuals such as those working in the hospitality industry.Fundação Calouste Gulbenkian and Administração Central do Sistema de Saúde in Portugal have funded this work

    Evening and morning alterations in Obstructive Sleep Apnea red blood cell proteome

    Get PDF
    This article presents proteomics data referenced in [1] Using proteomics-based evaluation of red blood cells (RBCs), we have identified differentially abundant proteins associated with Obstructive Sleep Apnea Syndrome (OSA). RBCs were collected from peripheral blood of patients with moderate/severe OSA or snoring at pre- (evening) and post-night (morning) polysomnography, so that proteome variations between these time points could be assessed. RBC cytoplasmic fraction depleted of hemoglobin, using Hemovoid™ system, were analyzed by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE), the 2D image software-based analyzed and relevant differentially abundant proteins identified by mass spectrometry (MS). MS identified 31 protein spots differentially abundant corresponding to 21 unique proteins possibly due to the existence of post-translational modification regulations. Functional analysis by bioinformatics tools indicated that most proteins are associated with catalytic, oxidoreductase, peroxidase, hydrolase, ATPase and anti-oxidant activity. At morning a larger numbers of differential proteins including response to chemical stimulus, oxidation reduction, regulation of catalytic activity and response to stress were observed in OSA. The data might support further research in OSA biomarker discovery and validation
    corecore