2 research outputs found

    Automated Quantification of Atherosclerosis in CTA of Carotid Arteries

    Get PDF
    How is the human body built and how does it function? What are the causes of disease, and where is disease located? Throughout the history of mankind these questions were answered by the use of invasive methods that included the “opening” of the human body, mainly cadavers. Thanks to these invasive techniques the first precise and complete anatomy works started to appear in the 16th century. The most influential works were published by Leonardo da Vinci and the anatomist and physician Andreas Vesalius. The discovery of X-rays in 1895, and their use for medical applications, introduced a new era, in which non-invasive imaging of the functioning human body became feasible. Nowadays, medical imaging includes many different imaging modalities, such as X-ray, computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US), nuclear and optical imaging, and has become an indispensable diagnostic tool for a wide range of applications. Initially, the application of medical imaging focused on the visualization of anatomy and on the detection and localization of disease. However, with the development of different modalities it has evolved into a much more versatile tool providing important information on e.g. physiology and organ function, biochemistry and metabolism using nuclear imaging (mainly positron emission tomography (PET) imaging), molecular and processes on the molecular and cellular level using molecular imaging techniques

    Leaf segmentation in plant phenotyping: a collation study

    Get PDF
    Image-based plant phenotyping is a growing application area of computer vision in agriculture. A key task is the segmentation of all individual leaves in images. Here we focus on the most common rosette model plants, Arabidopsis and young tobacco. Although leaves do share appearance and shape characteristics, the presence of occlusions and variability in leaf shape and pose, as well as imaging conditions, render this problem challenging. The aim of this paper is to compare several leaf segmentation solutions on a unique and first-of-its-kind dataset containing images from typical phenotyping experiments. In particular, we report and discuss methods and findings of a collection of submissions for the first Leaf Segmentation Challenge of the Computer Vision Problems in Plant Phenotyping workshop in 2014. Four methods are presented: three segment leaves by processing the distance transform in an unsupervised fashion, and the other via optimal template selection and Chamfer matching. Overall, we find that although separating plant from background can be accomplished with satisfactory accuracy (>>90 % Dice score), individual leaf segmentation and counting remain challenging when leaves overlap. Additionally, accuracy is lower for younger leaves. We find also that variability in datasets does affect outcomes. Our findings motivate further investigations and development of specialized algorithms for this particular application, and that challenges of this form are ideally suited for advancing the state of the art. Data are publicly available (online at http://​www.​plant-phenotyping.​org/​datasets) to support future challenges beyond segmentation within this application domain
    corecore