74 research outputs found

    Motor unit characteristics after targeted muscle reinnervation

    Get PDF
    Targeted muscle reinnervation (TMR) is a surgical procedure used to redirect nerves originally controlling muscles of the amputated limb into remaining muscles above the amputation, to treat phantom limb pain and facilitate prosthetic control. While this procedure effectively establishes robust prosthetic control, there is little knowledge on the behavior and characteristics of the reinnervated motor units. In this study we compared the m. pectoralis of five TMR patients to nine able-bodied controls with respect to motor unit action potential (MUAP) characteristics. We recorded and decomposed high-density surface EMG signals into individual spike trains of motor unit action potentials. In the TMR patients the MUAP surface area normalized to the electrode grid surface (0.25 ± 0.17 and 0.81 ± 0.46, p < 0.001) and the MUAP duration (10.92 ± 3.89 ms and 14.03 ± 3.91 ms, p < 0.01) were smaller for the TMR group than for the controls. The mean MUAP amplitude (0.19 ± 0.11 mV and 0.14 ± 0.06 mV, p = 0.07) was not significantly different between the two groups. Finally, we observed that MUAP surface representation in TMR generally overlapped, and the surface occupied by motor units corresponding to only one motor task was on average smaller than 12% of the electrode surface. These results suggest that smaller MUAP surface areas in TMR patients do not necessarily facilitate prosthetic control due to a high degree of overlap between these areas, and a neural information—based control could lead to improved performance. Based on the results we also infer that the size of the motor units after reinnervation is influenced by the size of the innervating motor neuron

    Biomechanical analysis of body movements of myoelectric prosthesis users during standardized clinical tests

    Get PDF
    Objective: The objective clinical evaluation of user's capabilities to handle their prosthesis is done using various tests which primarily focus on the task completion speed and do not explicitly account for the potential presence of compensatory motions. Given that the excessive body compensation is a common indicator of inadequate prosthesis control, tests which include subjective observations on the quality of performed motions have been introduced. However, these metrics are then influenced by the examiner's opinions, skills, and training making them harder to standardize across patient pools and compare across different prosthetic technologies. Here we aim to objectively quantify the severity of body compensations present in myoelectric prosthetic hand users and evaluate the extent to which traditional objective clinical scores are still able to capture them. Methods: We have instructed 9 below-elbow prosthesis users and 9 able-bodied participants to complete three established objective clinical tests: Box-and-Blocks-Test, Clothespin-Relocation-Test, and Southampton-Hand-Assessment-Procedure. During all tests, upper-body kinematics has been recorded. Results: While the analysis showed that there are some correlations between the achieved clinical scores and the individual body segment travel distances and average speeds, there were only weak correlations between the clinical scores and the observed ranges of motion. At the same time, the compensations were observed in all prosthesis users and, for the most part, they were substantial across the tests. Conclusion: The sole reliance on the currently available objective clinical assessment methods seems inadequate as the compensatory movements are prominent in prosthesis users and yet not sufficiently accounted for

    Phosphoproteome dynamics of streptomyces rimosus during submerged growth and antibiotic production

    Get PDF
    Streptomyces rimosus is an industrial streptomycete, best known as a producer of oxytetracycline, one of the most widely used antibiotics. Despite the significant contribution of species to the pharmaceutical industry, most omics analyses have only been conducted on the model organism Streptomyces coelicolor. In recent years, protein phosphorylation on serine, threonine, and tyrosine (Ser, Thr, and Tyr, respectively) has been shown to play a crucial role in the regulation of numerous cellular processes, including metabolic changes leading to antibiotic production and morphological changes. In this study, we performed a comprehensive quantitative (phospho)proteomic analysis during the growth of S. rimosus under conditions of oxytetracycline production and pellet fragmentation. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis combined with phosphopeptide enrichment detected a total of 3,725 proteins, corresponding to 45.6% of the proteome and 417 phosphorylation sites from 230 phosphoproteins. Significant changes in abundance during three distinct growth phases were determined for 494 proteins and 98 phosphorylation sites. Functional analysis revealed changes in phosphorylation events of proteins involved in important cellular processes, including regulatory mechanisms, primary and secondary metabolism, cell division, and stress response. About 80% of the phosphoproteins detected during submerged growth of S. rimosus have not yet been reported in streptomycetes, and 55 phosphoproteins were not reported in any prokaryote studied so far. This enabled the creation of a unique resource that provides novel insights into the dynamics of (phospho)proteins and reveals many potential regulatory events during antibiotic production in liquid culture of an industrially important bacterium. Streptomyces rimosus is best known as a primary source of oxytetracycline (OTC). The significant global market value of OTC highlights the need for a better understanding of the regulatory mechanisms that lead to production of this antibiotic. Our study provides, for the first time, a detailed insight into the dynamics of (phospho)proteomic profiles during growth and antibiotic production in liquid culture of S. rimosus. Significant changes in protein synthesis and phosphorylation have been revealed for a number of important cellular proteins during the growth stages that coincide with OTC production and morphological changes of this industrially important bacterium. Most of these proteins have not been detected in previous studies. Therefore, our results significantly expand the insight into phosphorylation events associated with important cellular processes and antibiotic production; they also greatly increase the phosphoproteome of streptomycetes and contribute with newly discovered phosphoproteins to the database of prokaryotic phosphoproteomes. This can consequently lead to the design of novel research directions in elucidation of the complex regulatory network in

    Undergraduate medical research: the student perspective

    Get PDF
    Background: Research training is essential in a modern undergraduate medical curriculum. Our evaluation aimed to (a) gauge students&#x2019; awareness of research activities, (b) compare students&#x2019; perceptions of their transferable and research-specific skills competencies, (c) determine students&#x2019; motivation for research and (d) obtain students&#x2019; personal views on doing research. Methods: Undergraduate medical students (N=317) completed a research skills questionnaire developed by the Centre for Excellence in Teaching and Learning in Applied Undergraduate Research Skills (CETL-AURS) at Reading University. The questionnaire assessed students&#x2019; transferable skills, research-specific skills (e.g., study design, data collection and data analysis), research experience and attitude and motivation towards doing research. Results: The majority of students are motivated to pursue research. Graduate entrants and male students appear to be the most confident regarding their research skills competencies. Although all students recognise the role of research in medical practice, many are unaware of the medical research activities or successes within their university. Of those who report no interest in a career incorporating research, a common perception was that researchers are isolated from patients and clinical practice. Discussion: Students have a narrow definition of research and what it entails. An explanation for why research competence does not align more closely with research motivation is derived from students&#x2019; lack of understanding of the concept of translational research, as well as a lack of awareness of the research activity being undertaken by their teachers and mentors. We plan to address this with specific research awareness initiatives

    Individual characteristics and student's engagement in scientific research : a cross-sectional study

    Get PDF
    Background: In light of the increasing recognition of the importance of physician scientists, and given the association between undergraduate research experiences with future scientific activity, it is important to identify and understand variables related to undergraduate student’s decision to engage in scientific research activities. The present study assessed the influence of individual characteristics, including personality traits and socio-demographic characteristics, on voluntary engagement in scientific research of undergraduate medical students. Methods: For this study, all undergraduate students and alumni of the School of Health Sciences in Minho, Portugal were invited to participate in a survey about voluntary engagement in scientific research activities. Data were available on socio-demographic, personality and university admission variables, as part of an ongoing longitudinal study. A regression model was used to compare (1) engaged with (2) not engaged students. A classification and regression tree model was used to compare students engaged in (3) elective curricular research (4) and extra-curricular research. Results: A total of 466 students (88%) answered the survey. A complete set of data was available for 435 students (83%).Higher scores in admission grade point average and the personality dimensions of “openness to experience” and “conscientiousness” increased chances of engagement. Higher “extraversion” scores had the opposite effect. Male undergraduate students were two times more likely than females to engage in curricular elective scientific research and were also more likely to engage in extra-curricular research activities. Conclusions: This study demonstrated that student’s grade point average and individual characteristics, like gender, openness and consciousness have a unique and statistically significant contribution to student’s involvement in undergraduate scientific research activities.Fundação para a Ciência e a Tecnologia (FCT) - PTDC/ESC/65116/200

    Isolation and Characterization of EstC, a New Cold-Active Esterase from Streptomyces coelicolor A3(2)

    Get PDF
    The genome sequence of Streptomyces coelicolor A3(2) contains more than 50 genes coding for putative lipolytic enzymes. Many studies have shown the capacity of this actinomycete to store important reserves of intracellular triacylglycerols in nutrient depletion situations. In the present study, we used genome mining of S. coelicolor to identify genes coding for putative, non-secreted esterases/lipases. Two genes were cloned and successfully overexpressed in E. coli as His-tagged fusion proteins. One of the recombinant enzymes, EstC, showed interesting cold-active esterase activity with a strong potential for the production of valuable esters. The purified enzyme displayed optimal activity at 35°C and was cold-active with retention of 25% relative activity at 10°C. Its optimal pH was 8.5–9 but the enzyme kept more than 75% of its maximal activity between pH 7.5 and 10. EstC also showed remarkable tolerance over a wide range of pH values, retaining almost full residual activity between pH 6–11. The enzyme was active toward short-chain p-nitrophenyl esters (C2–C12), displaying optimal activity with the valerate (C5) ester (kcat/Km = 737±77 s−1 mM−1). The enzyme was also very active toward short chain triglycerides such as triacetin (C2:0) and tributyrin (C4:0), in addition to showing good primary alcohol and organic solvent tolerance, suggesting it could function as an interesting candidate for organic synthesis of short-chain esters such as flavors
    corecore