564 research outputs found

    Face Perception in the Mind's Eye

    Get PDF
    Perceptual filling-in occurs when visual stimuli are recognized in impoverished viewing conditions. Whether missing information is filled-in during face perception and which stages might be involved in this process are still unresolved questions. Because an identity can be brought to mind by seeing eyes only, we hypothesized that missing information might be filled-in from a memory trace for the whole face identity. We presented participants with faces in phase 1 and later we presented eyes-only in phase 2. For some of these eyes in phase 2, the whole face had been presented in the previous phase, for others identical eyes had been presented. Event-related potentials (ERPs) revealed an N170 component that was more negative when eyes were preceded by a whole face in the previous phase compared to eyes preceded by identical eyes-only. A more positive-going late positive complex (LPC) was also found, suggesting enhanced retrieval of face memory representations when eyes were preceded by whole faces. Our results show that pre-existing representations of face identity can influence early stages of visual encoding, 170ms after stimulus onset. These effects may reflect top-down modulation by memory on visual recognition processes by filling-in the missing facial informatio

    Precision about the automatic emotional brain

    Get PDF
    The question of automaticity in emotion processing has been debated under different perspectives in recent years. Satisfying answers to this issue will require a better definition of automaticity in terms of relevant behavioral phenomena, ecological conditions of occurrence, and a more precise mechanistic account of the underlying neural circuit

    EmoStim: A Database of Emotional Film Clips with Discrete and Componential Assessment

    Full text link
    Emotion elicitation using emotional film clips is one of the most common and ecologically valid methods in Affective Computing. However, selecting and validating appropriate materials that evoke a range of emotions is challenging. Here we present EmoStim: A Database of Emotional Film Clips as a film library with a rich and varied content. EmoStim is designed for researchers interested in studying emotions in relation to either discrete or componential models of emotion. To create the database, 139 film clips were selected from literature and then annotated by 638 participants through the CrowdFlower platform. We selected 99 film clips based on the distribution of subjective ratings that effectively distinguished between emotions defined by the discrete model. We show that the selected film clips reliably induce a range of specific emotions according to the discrete model. Further, we describe relationships between emotions, emotion organization in the componential space, and underlying dimensions representing emotional experience. The EmoStim database and participant annotations are freely available for research purposes. The database can be used to enrich our understanding of emotions further and serve as a guide to select or create additional materials.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Electrophysiological Correlates of Rapid Spatial Orienting Towards Fearful Faces

    Get PDF
    We investigated the spatio-temporal dynamic of attentional bias towards fearful faces. Twelve participants performed a covert spatial orienting task while recording visual event-related brain potentials (VEPs). Each trial consisted of a pair of faces (one emotional and one neutral) briefly presented in the upper visual field, followed by a unilateral bar presented at the location of one of the faces. Participants had to judge the orientation of the bar. Comparing VEPs to bars shown at the location of an emotional (valid) versus neutral (invalid) face revealed an early effect of spatial validity: the lateral occipital P1 component (~130 ms post-stimulus) was selectively increased when a bar replaced a fearful face compared to when the same bar replaced a neutral face. This effect was not found with upright happy faces or inverted fearful faces. A similar amplification of P1 has previously been observed in electrophysiological studies of spatial attention using non-emotional cues. In a behavioural control experiment, participants were also better at discriminating the orientation of the bar when it replaced a fearful rather than a neutral face. In addition, VEPs time-locked to the face-pair onset revealed a C1 component (~90 ms) that was greater for fearful than happy faces. Source localization (LORETA) confirmed an extrastriate origin of the P1 response showing a spatial validity effect, and a striate origin of the C1 response showing an emotional valence effect. These data suggest that activity in primary visual cortex might be enhanced by fear cues as early as 90 ms post-stimulus, and that such effects might result in a subsequent facilitation of sensory processing for a stimulus appearing at the same location. These results provide evidence for neural mechanisms allowing rapid, exogenous spatial orienting of attention towards fear stimul

    Effects of social context and predictive relevance on action outcome monitoring

    Get PDF
    Outcome monitoring is crucial for subsequent adjustments in behavior and is associated with a specific electrophysiological response, the feedback-related negativity (FRN). Besides feedback generated by one's own action, the performance of others may also be relevant for oneself, and the observation of outcomes for others' actions elicits an observer FRN (oFRN). To test how these components are influenced by social setting and predictive value of feedback information, we compared event-related potentials, as well as their topographies and neural generators, for performance feedback generated by oneself and others in a cooperative versus competitive context. Our results show that (1) the predictive relevance of outcomes is crucial to elicit an FRN in both players and observers, (2) cooperation increases FRN and P300 amplitudes, especially in individuals with high traits of perspective taking, and (3) contrary to previous findings on gambling outcomes, oFRN components are generated for both cooperating and competing observers, but with smaller amplitudes in the latter. Neural source estimation revealed medial prefrontal activity for both FRN and oFRN, but with additional generators for the oFRN in the dorsolateral and ventral prefrontal cortex, as well as the temporoparietal junction. We conclude that the latter set of brain regions could mediate social influences on action monitoring by representing agency and social relevance of outcomes and are, therefore, recruited in addition to shared prediction error signals generated in medial frontal areas during action outcome observatio

    Anosognosia for hemiplegia: a clinical-anatomical prospective study

    Get PDF
    Anosognosia for hemiplegia is a common and striking disorder following stroke. Because it is typically transient and variable, it remains poorly understood and has rarely been investigated at different times in a systematic manner. Our study evaluated a prospective cohort of 58 patients with right-hemisphere stroke and significant motor deficit of the left hemibody, who were examined using a comprehensive neuropsychological battery at 3 days (hyperacute), 1 week (subacute) and 6 months (chronic) after stroke onset. Anosognosia for hemiplegia was frequent in the hyperacute phase (32%), but reduced by almost half 1 week later (18%) and only rarely seen at 6 months (5%). Anosognosia for hemiplegia was correlated with the severity of several other deficits, most notably losses in proprioception, extrapersonal spatial neglect and disorientation. While multiple regression analyses highlighted proprioceptive loss as the most determinant factor for the hyperacute period, and visuospatial neglect and disorientation as more determinant for the subacute phase, patients with both proprioceptive loss and neglect had significantly higher incidence of anosognosia for hemiplegia than those with only one deficit or no deficits (although a few double dissociations were observed). Personal neglect and frontal lobe tests showed no significant relation with anosognosia for hemiplegia, nor did psychological traits such as optimism and mood. Moreover, anosognosia for neglect and prediction of performance in non-motor tasks were unrelated to anosognosia for hemiplegia, suggesting distinct monitoring mechanisms for each of these domains. Finally, by using a voxel-based statistical mapping method to identify lesions associated with a greater severity of anosognosia, we found that damage to the insula (particularly its anterior part) and adjacent subcortical structures was determinant for anosognosia for hemiplegia in the hyperacute period, while additional lesions in the premotor cortex, cingulate gyrus, parietotemporal junction and medial temporal structures (hippocampus and amygdala) were associated with the persistence of anosognosia for hemiplegia in the subacute phase. Taken together, these results suggest that anosognosia for hemiplegia is likely to reflect a multi-component disorder due to lesions affecting a distributed set of brain regions, which can lead to several co-existing deficits in sensation, attention, interoceptive bodily representations, motor programming, error monitoring, memory and even affective processing, possibly with different combinations in different patient

    Mapping Aesthetic Musical Emotions in the Brain

    Get PDF
    Music evokes complex emotions beyond pleasant/unpleasant or happy/sad dichotomies usually investigated in neuroscience. Here, we used functional neuroimaging with parametric analyses based on the intensity of felt emotions to explore a wider spectrum of affective responses reported during music listening. Positive emotions correlated with activation of left striatum and insula when high-arousing (Wonder, Joy) but right striatum and orbitofrontal cortex when low-arousing (Nostalgia, Tenderness). Irrespective of their positive/negative valence, high-arousal emotions (Tension, Power, and Joy) also correlated with activations in sensory and motor areas, whereas low-arousal categories (Peacefulness, Nostalgia, and Sadness) selectively engaged ventromedial prefrontal cortex and hippocampus. The right parahippocampal cortex activated in all but positive high-arousal conditions. Results also suggested some blends between activation patterns associated with different classes of emotions, particularly for feelings of Wonder or Transcendence. These data reveal a differentiated recruitment across emotions of networks involved in reward, memory, self-reflective, and sensorimotor processes, which may account for the unique richness of musical emotion

    Beyond Conventional Event-related Brain Potential (ERP): Exploring the Time-course of Visual Emotion Processing Using Topographic and Principal Component Analyses

    Get PDF
    Recent technological advances with the scalp EEG methodology allow researchers to record electric fields generated in the human brain using a large number of electrodes or sensors (e.g. 64-256) distributed over the head surface (multi-channel recording). As a consequence, such high-density ERP mapping yields fairly dense ERP data sets that are often hard to analyze comprehensively or to relate straightforwardly to specific cognitive or emotional processes, because of the richness of the recorded signal in both the temporal (millisecond time-resolution) and spatial (multidimensional topographic information) domains. Principal component analyses (PCA) and topographic analyses (combined with distributed source localization algorithms) have been developed and successfully used to deal with this complexity, now offering powerful alternative strategies for data-driven analyses in complement to more traditional ERP analyses based on waveforms and peak measures. In this paper, we first briefly review the basic principles of these approaches, and then describe recent ERP studies that illustrate how they can inform about the precise spatio-temporal dynamic of emotion processing. These studies show that the perception of emotional visual stimuli may produce both quantitative and qualitative changes in the electric field configuration recorded at the scalp level, which are not apparent when using conventional ERP analyses. Additional information gained from these approaches include the identification of a sequence of successive processing stages that may not fully be reflected in ERP waveforms only, and the segregation of multiple or partly overlapping neural events that may be blended within a single ERP waveform. These findings highlight the added value of such alternative analyses when exploring the electrophysiological manifestations of complex and distributed mental functions, as for instance during emotion processin
    • …
    corecore