10 research outputs found

    SoccerStories: A Kick-off for Visual Soccer Analysis

    Get PDF
    This article presents SoccerStories, a visualization interface to support analysts in exploring soccer data and communicating interesting insights. Currently, most analyses on such data relate to statistics on individual players or teams. However, soccer analysts we collaborated with consider that quantitative analysis alone does not convey the right picture of the game, as context, player positions and phases of player actions are the most relevant aspects. We designed SoccerStories to support the current practice of soccer analysts and to enrich it, both in the analysis and communication stages. Our system provides an overview+detail interface of game phases, and their aggregation into a series of connected visualizations, each visualization being tailored for actions such as a series of passes or a goal attempt. To evaluate our tool, we ran two qualitative user studies on recent games using SoccerStories with data from one of the world's leading live sports data providers. The first study resulted in a series of four articles on soccer tactics, by a tactics analyst, who said he would not have been able to write these otherwise. The second study consisted in an exploratory follow-up to investigate design alternatives for embedding soccer phases into word-sized graphics. For both experiments, we received a very enthusiastic feedback and participants consider further use of SoccerStories to enhance their current workflow

    Investigating the direct manipulation of ranking tables for time navigation

    Get PDF
    We introduce a novel time navigation technique to update ranking tables by direct manipulation. The technique allows users to drag a table's cells to change the time period, while a line chart overlays on top of the table to provide an overview of the changes. The line chart is also a visual hint to control the pace at which data are updated. We explore the design and usability of this technique for table variations in size, time spans and data variability. We report the results of a usability study, using academic citation rankings and economic complexity datasets, and discuss design implications coming with real-world scenarios such as missing data and affordance

    A Generic Interactive Membership Function for Categorization of Quantities

    No full text
    The membership function is to categorize quantities along with a confidence degree. This article investigates a generic user interaction based on this function for categorizing various types of quantities without modification, which empowers users to articulate uncertainty categorization and enhance their visual data analysis significantly. We present the technique design and an online prototype, supplementing with insights from three case studies that highlight the technique's efficacy among different types of quantities. Furthermore, we conduct a formal user study to scrutinize the process and reasoning users employ while utilizing our technique. The findings indicate that our technique can help users create customized categories. Both our code and the interactive prototype are made available as open-source resources, intended for application across varied domains as a generic tool

    Towards Design Principles for Visual Analytics in Operations Contexts

    No full text
    Operations engineering teams interact with complex data systems to make technical decisions that ensure the operational efficacy of their missions. To support these decision-making tasks, which may require elastic prioritization of goals dependent on changing conditions, custom analytics tools are often developed. We were asked to develop such a tool by a team at the NASA Jet Propulsion Laboratory, where rover telecom operators make decisions based on models predicting how much data rovers can transfer from the surface of Mars. Through research, design, implementation, and informal evaluation of our new tool, we developed principles to inform the design of visual analytics systems in operations contexts. We offer these principles as a step towards understanding the complex task of designing these systems. The principles we present are applicable to designers and developers tasked with building analytics systems in domains that face complex operations challenges such as scheduling, routing, and logistics

    Scipion Flexibility Hub: an integrative framework for advanced analysis of conformational heterogeneity in cryoEM

    No full text
    International audienceUnderstanding how structure and function meet to drive biological processes is progressively shifting the cryoEM field towards a more advanced analysis of macromolecular flexibility. Thanks to techniques such as single-particle analysis and electron tomography, it is possible to image a macromolecule in different states, information that can subsequently be extracted through advanced imageprocessing methods to build a richer approximation of a conformational landscape. However, the interoperability of all of these algorithms remains a challenging task that is left to users, preventing them from defining a single flexible workflow in which conformational information can be addressed by different algorithms. Therefore, in this work, a new framework integrated into Scipion is proposed called the Flexibility Hub. This framework automatically handles intercommunication between different heterogeneity software, simplifying the task of combining the software into workflows in which the quality and the amount of information extracted from flexibility analysis is maximized
    corecore