28 research outputs found

    A Fiber Optic Catalytic Sensor for Neutral Atom Measurements in Oxygen Plasma

    Get PDF
    The presented sensor for neutral oxygen atom measurement in oxygen plasma is a catalytic probe which uses fiber optics and infrared detection system to measure the gray body radiation of the catalyst. The density of neutral atoms can be determined from the temperature curve of the probe, because the catalyst is heated predominantly by the dissipation of energy caused by the heterogeneous surface recombination of neutral atoms. The advantages of this sensor are that it is simple, reliable, easy to use, noninvasive, quantitative and can be used in plasma discharge regions. By using different catalyst materials the sensor can also be applied for detection of neutral atoms in other plasmas. Sensor design, operation, example measurements and new measurement procedure for systematic characterization are presented

    Développement de nouvelles surfaces anti-bioadhésives pour des maladies neurodégénératives

    No full text
    Ces travaux de recherche s inscrivent dans le cadre du développement de nouvelles surfaces biocompatibles capables de contrôler l adhésion d agents pathogènes responsables de maladies neurodégénératives telles que les maladies de Creutzfeld Jacob, Alzheimer, Parkinson et Lewis. Deux axes de recherche ont été privilégiés. Notre approche se focalise en amont des dosages sur l amélioration des procédures de stockage des prélèvements biologiques réalisés dans des tubes de type Eppendorf. Ces tubes en polypropylène induisent une perte du matériel génétique de plus de 70% accentuant la faible concentration en agent pathogène pour la détection immunoenzymatique. Dans le but de réduire les phénomènes indésirables d adhésion des agents pathogènes à la surface des supports de stockage, deux voies de traitement ont été envisagées dans ce travail de thèse. La première consiste à modifier la surface du tube Eppendorf en une étape par décharge plasma fluoré, la seconde à créer de nouvelles surfaces hydrophiles en deux étapes couplant la technique des plasmas froids au greffage de polymères, les agents pathogènes pouvant être hydrophiles ou hydrophobes. Avec cette dernière technique, une voie originale a été abordée de part l utilisation de solutions de greffage complexes composées à la fois de polymères et de molécules tensioactives. Les surfaces ainsi obtenues présentent une nano-structuration. Toutes les étapes de modification de la surface interne des tubes de stockage ont été caractérisées. Ces surfaces sont alors décrites selon leur caractère hydrophile ou hydrophobe grâce à la détermination des énergies de surface polaire et apolaire, selon leur charge de surface obtenue par mesure du potentiel d écoulement, selon leur composition chimique déterminée par spectroscopie à photoélectrons X (XPS) et enfin selon leur topographie et leur rugosité relevées par microscopie à force atomique (AFM). Les interactions entre les groupements fonctionnels ainsi obtenus à la surface des tubes de stockage après les divers traitements et les protéines antigéniques considérées ont été interprétées en se référant aux différents modèles de l adhésion pour des gammes de pH proches des protocoles biologiques usuels. Afin de s assurer que ces nouvelles surfaces permettent bien une diminution de l adhésion des agents infectieux sur la paroi interne des tubes de polypropylène, des analyses immunoenzymatiques ont été réalisées au sein des centres hospitaliers participant au projet STREP NEUROSCREEN n LSHB-CT 2006-03 7719 (CRPP de Liège et CHU de Lyon). Ces analyses ont permis de montrer que la modification des surfaces entraîne une diminution de l absorption des agents pathogènes jusqu'à 100% permettant ainsi une meilleure détection.The research work presented in this thesis considers the development of new biocompatible surfaces that are able to control the adhesion of specific proteins responsible for the development of neurodegenerative diseases such as Creutzfeldt Jakob, Alzheimer, Parkinson and Lewis body disease. Our approach was focused on problems prior to the detection step, which were never considered before, particularly on the improvement of Eppendorf tubes that are used for the storage of body fluids like cerebrospinal fluid and blood. Namely these tubes made of polypropylene induce the depletion of biological material, in some cases even over 70%, resulting in a low concentration of these proteins for the further immunoenzymatic detection. With the purpose to reduce the adhesion of specific proteins on the surface of supports, two courses of treatments were anticipated. The first one consists of surface modification by highly reactive fluorine plasma treatment and the second one incorporates development of new hydrophilic surfaces by coupling two techniques, plasma activation and subsequent grafting of polymer materials. With the latter approach, an original way of surface modification has been attained by using complex solutions of polymers and surfactants that permits controlled configuration of nanostructured surfaces. All steps of surface modifications were well characterized by different physicochemical methods. The surface hydrophilic/hydrophobic character was determined by measurements of polar and apolar surface energy, surface charge by magnitude of zeta potential, surface chemistry was evaluated by x-ray photoelectron spectroscopy (XPS), while the surface roughness and topography were monitored by atomic force microscopy (AFM). The interactions between functional groups of treated supports and proteins were interpreted referring to different models of adhesion established for a range of pH values close to the classical biological protocols. Finally, in order to validate that the new surfaces are able to prevent or decrease the adhesion of neurodegenerative agents on the surfaces of Eppendorf tubes, the immunoenzymatic analyses were carried out in hospital centres of partners that were participating to the project STREP NEUROSREEN n LSHB-CT-2006-03 7719 (Centre de Recherche sur les Protéines Prion; Liege (ULG), Hospices Civils de Lyon (CHUL) and Lancaster University (L-UNI)). These analyses showed that the treatments led to a decrease of antigen adsorption up to 100%, enabling (allowing) better detection of pathogenic agents.LE MANS-BU Sciences (721812109) / SudocSudocFranceF

    Surface Treatment of Polymeric Materials Controlling the Adhesion of Biomolecules

    Full text link
    This review describes different strategies of surface elaboration for a better control of biomolecule adsorption. After a brief description of the fundamental interactions between surfaces and biomolecules, various routes of surface elaboration are presented dealing with the attachment of functional groups mostly thanks to plasma techniques, with the grafting to and from methods, and with the adsorption of surfactants. The grafting of stimuli-responsive polymers is also pointed out. Then, the discussion is focused on the protein adsorption phenomena showing how their interactions with solid surfaces are complex. The adsorption mechanism is proved to be dependent on the solid surface physicochemical properties as well as on the surface and conformation properties of the proteins. Different behaviors are also reported for complex multiple protein solutions

    Elaboration of thin colloidal silica films with controlled thickness and wettability

    Get PDF
    AbstractSilica films with controlled thickness and wettability have been formed by sequential adsorption of colloidal silica nanoparticles and a cationic polyelectrolyte (poly(allylamine hydrochloride) or poly(diallyldimethylammonium chloride)) was used as the binding agent. Whatever be the conditions used, the structure of films appeared dense and non-porous. Thicknesses varying from 12 to 430 nm and wettability varying from 5 to 60° were obtained when the pH or concentration of the silica solution was varied. Quartz crystal microbalance measurements evidenced the formation of regular and reproducible thin films mainly composed of silica nanoparticles. These films contained few polycations due to the formation of long-distance charge pairs between silica nanoparticles and polycations

    pH-Responsive PEG/PAA Multilayer Assemblies for Reversible Adhesion of Micro-Objects

    No full text
    International audienceManipulating micro-objects plays a crucial role in a wide range of fundamental and applied research works. Here, we propose an original strategy based on the chemical modification of a substrate by hydrogen-bonded films elaborated by layer-by-layer (LbL) assemblies of poly(ethylene glycol) (PEG) and poly(acrylic acid) (PAA). First, the influence of the polymer molecular weight on the growth of the PEG/PAA multilayer was evaluated. Optical reflectometry analysis used to follow in situ the film buildup revealed a strong dependence of the deposited amount of polymer on the ratio of monomer units of each polymer (nPAA/nPEG). Then, colloidal probe atomic force microscopy (AFM) microscopy was carried out in an aqueous medium to monitor the adhesion forces of multilayer surfaces composed of N polymer layers. Pull-off forces were converted using the Johnson–Kendall–Roberts (JKR) model to access the thermodynamic work of adhesion. Results indicated that PEG/PAA multilayer films exhibit weak adhesion forces that are sensitive to the number of deposited polymer layers at pH 2. In addition, a progressive increase of the solution pH reduced the adhesion due to the destruction of the hydrogen-bonded multilayer film. To simulate the capture and the release of a micro-object, borosilicate particles acting as spherical micro-objects were adsorbed onto a PEG/PAA film. Once again, an increase of the solution pH led to desorption of particles, as shown by optical microscopy. Finally, an AFM tip functionalized by a PEG/PAA multilayer was used to achieve successful micromanipulation operations (capture and release) of a 10 μm diameter borosilicate sphere in an aqueous solution

    Use of hydrogen bonded layer-by-layer assemblies for particle manipulation

    No full text
    International audienceWith the constant progress in miniaturization of systems and devices, the manipulation of µ-objects is becoming increasingly important. Chemical functionalization is a promising way to improve this manipulation, in particular multilayer polymer films based on hydrogen bonds can allow to achieve reversible adhesion of µ-objects. To prepare such hydrogen-bonded Layer-by-Layer (LbL) films, poly(ethylene glycol) (PEG), poly(acrylic acid) (PAA), Tannic acid (TA) and Poly(N-isopropylacrylamide) carboxylic acid-terminated (PNIPAM) were selected due to their hydrogen donor or acceptor properties. The growth of these films was originally confirmed by in situ optical reflectometry. Their erasability was also investigated by exposure to an aqueous solution with a pH gradient. Depending on the polymer couple, the pH of disintegration was adjusted from an acidic to a basic medium. The surface roughness was also affected by the building block of the LbL architecture since a rougher surface was recorded for PEG/TA than for PEG/PAA. To mimic the manipulation of an object, adsorption and desorption of a model object (silica particles) was carried out onto a LbL film. Two approaches were employed: optical reflectometry as an indirect method and optical microscopy for direct visualization. For both analyses, particles of different sizes could be adsorbed onto a PEG/PAA or PAA/PNIPAM film. Finally, a complete desorption of the particles was recorded due to the disintegration of the LbL film when the pH was increased

    Application of original assemblies of polyelectrolytes, urease and electrodeposited polyaniline as sensitive films of potentiometric urea biosensors

    No full text
    Original assemblies were prepared for use as sensitive films of potentiometric enzyme urea sensors, and compared to identify the more efficient structure with respect to stability. These films included electrodeposited polyaniline, used as transducer, urease, used as catalyst, and biocompatible polyelectrolytes, used as a matrix to preserve the integrity of the enzyme in the sensitive film. Two kinds of assemblies were done: the first one consisted in the adsorption of urease onto a polyaniline film followed by the adsorption of a chitosan-carboxymethylpullulan multilayer film, while the second one consisted in the adsorption of a urease-chitosan multilayer film onto an electrodeposited polyaniline film. The morphological features and growth of these assemblies were characterized by scanning electron microscopy and quartz crystal microbalance, respectively. This allowed us to demonstrate that the assemblies are successfully formed onto the electrodes of the sensors. The potentiometric responses of both assemblies were then measured as a function of urea concentration using a home-made portable potentiostat. The electrochemical response of resulting sensors was fast and sensitive for both types of assemblies, but the stability in time was much better for the films obtained from alternative adsorption of urease and chitosan onto a layer of urease adsorbed over electrodeposited polyaniline
    corecore