165 research outputs found
Hypothyroidism conversion to hyperthyroidism: it's never too late.
Primary hypothyroidism is a common endocrine condition, most commonly caused by autoimmune thyroiditis (Hashimoto's disease) while Graves' disease is the most common cause of hyperthyroidism. Hypothyroidism is usually a permanent condition in most patients requiring lifelong levothyroxine treatment. Transformation from Hashimoto's disease to Graves' disease is considered rare but recently been increasingly recognised. We describe a case of a 61-year-old lady who was diagnosed with hypothyroidism approximately three decades ago and treated with levothyroxine replacement therapy. Approximately 27 years after the initial diagnosis of hypothyroidism, she started to become biochemically and clinically hyperthyroid. This was initially managed with gradual reduction in the dose of levothyroxine, followed by complete cessation of the medication, but she remained hyperthyroid, ultimately requiring anti-thyroid treatment with Carbimazole. This case highlights that there should be a high index of suspicion for a possible conversion of hypothyroidism to hyperthyroidism, even many years after the initial diagnosis of hypothyroidism. To our knowledge, this case illustrates the longest reported time interval between the diagnosis of hypothyroidism until the conversion to hyperthyroidism. Learning points: Occurrence of Graves' disease after primary hypothyroidism is uncommon but possible.In this case, there was a time-lapse of almost 28 years and therefore this entity may not be as rare as previously thought.Diagnosis requires careful clinical and biochemical assessment. Otherwise, the case can be easily confused for over-replacement of levothyroxine.We suggest measuring both anti-thyroid peroxidase (TPO) antibodies and TSH receptor antibodies (TRAB) in suspected cases.The underlying aetiology for the conversion is not exactly known but probably involves autoimmune switch by an external stimulus in genetically susceptible individuals
Design principles governing the development of theranostic anticancer agents and their nanoformulations with photoacoustic properties
The unmet need to develop novel approaches for cancer diagnosis and treatment has led to the evolution of theranostic agents, which usually include, in addition to the anticancer drug, an imaging agent based mostly on fluorescent agents. Over the past few years, a non-invasive photoacoustic imaging modality has been effectively integrated into theranostic agents. Herein, we shed light on the design principles governing the development of theranostic agents with photoacoustic properties, which can be formulated into nanocarriers to enhance their potency. Specifically, we provide an extensive analysis of their individual constituents including the imaging dyes, drugs, linkers, targeting moieties, and their formulation into nanocarriers. Along these lines, we present numerous relevant paradigms. Finally, we discuss the clinical relevance of the specific strategy, as also the limitations and future perspectives, and through this review, we envisage paving the way for the development of theranostic agents endowed with photoacoustic properties as effective anticancer medicines
Self-administered gerocognitive examination (SAGE) aids early detection of cognitive impairment at primary care provider visits
IntroductionCurrent estimates indicate that up to 50–75% of dementia cases are undiagnosed at an early stage when treatments are most effective. Conducting robust accurate cognitive assessments can be time-consuming for providers and difficult to incorporate into a time-limited Primary Care Provider (PCP) visit. We wanted to compare PCP visits with and without using the self-administered SAGE to determine differences in identification rates of new cognitive disorders.MethodsThree hundred patients aged 65–89 without diagnosed cognitive disorders completing a non-acute office visit were enrolled (ClinicalTrials.gov identifier: NCT04063371). Two PCP offices conducted routine visits for 100 consecutive eligible patients each. One office used the SAGE in an additional 100 subjects and asked available informants about cognitive changes over the previous year. Chart reviews were conducted 60 days later. One-way analysis of variance and Fisher exact tests were used to compare the groups and outcomes.ResultsWhen SAGE was utilized, the PCP documented the detection of new cognitive conditions/concerns six times (9% versus 1.5%) as often (p = 0.003). The detection rate was nearly 4-fold for those with cognitively impaired SAGE scores (p = 0.034). Patients having impaired SAGE score and informant concerns were 15-fold as likely to have new cognitive conditions/concerns documented (p = 0.0007). Among providers using SAGE, 86% would recommend SAGE to colleagues.DiscussionSAGE was easily incorporated into PCP visits and significantly increased identification of new cognitive conditions/concerns leading to new diagnoses, treatment, or management changes. The detection rate increased 15-fold for those with impaired SAGE scores combined with informant reports
Thermal Conductivity of the Martian Soil at the InSight Landing site from HP3 Active Heating Experiments
The heat flow and physical properties package (HP3) of the InSight Mars mission is an instrument package designed to determine the martian planetary heat flow. To this end, the package was designed to emplace sensors into the martian subsurface and measure the thermal conductivity as well as the geothermal gradient in the 0-5 m depth range. After emplacing the probe to a tip depth of 0.37 m, a first reliable measurement of the average soil thermal conductivity in the 0.03 to 0.37 m depth range was performed. Using the HP3 mole as a modified line heat source, we determined a soil thermal conductivity of 0.039 +/- 0.002 W/mK, consistent with the results of orbital and in-situ thermal inertia measurements. This low thermal conductivity implies that 85 to 95% of all particles are smaller than 104-173 micrometer and suggests that any cement contributing to soil cohesion cannot significantly increase grain-to-grain contact areas by forming cementing necks, but could be distributed in the form of grain coatings instead. Soil densities compatible with the measurements are 1211(-113+149) kg/m3, indicating soil porosities of 61
Automated office blood pressure measurements in primary care are misleading in more than one third of treated hypertensives: The VALENTINE-Greece Home Blood Pressure Monitoring study
Abstract Background This study assessed the diagnostic reliability of automated office blood pressure (OBP) measurements in treated hypertensive patients in primary care by evaluating the prevalence of white coat hypertension (WCH) and masked uncontrolled hypertension (MUCH) phenomena. Methods Primary care physicians, nationwide in Greece, assessed consecutive hypertensive patients on stable treatment using OBP (1 visit, triplicate measurements) and home blood pressure (HBP) measurements (7 days, duplicate morning and evening measurements). All measurements were performed using validated automated devices with bluetooth capacity (Omron M7 Intelli-IT). Uncontrolled OBP was defined as ≥140/90 mmHg, and uncontrolled HBP was defined as ≥135/85 mmHg. Results A total of 790 patients recruited by 135 doctors were analyzed (age: 64.5 ± 14.4 years, diabetics: 21.4%, smokers: 20.6%, and average number of antihypertensive drugs: 1.6 ± 0.8). OBP (137.5 ± 9.4/84.3 ± 7.7 mmHg, systolic/diastolic) was higher than HBP (130.6 ± 11.2/79.9 ± 8 mmHg; difference 6.9 ± 11.6/4.4 ± 7.6 mmHg, p Conclusions In primary care, automated OBP measurements are misleading in approximately 40% of treated hypertensive patients. HBP monitoring is mandatory to avoid overtreatment of subjects with WCH phenomenon and prevent undertreatment and subsequent excess cardiovascular disease in MUCH
The mechanical properties of the Martian soil at the InSight landing site
The InSight mission is a NASA geophysical mission aimed at better understanding the structure of Mars and of the other rocky plan-ets of the solar system. To do so, various instruments are used, including a very sensitive seismometer (SEIS) and a dynamic self-penetrating heat probe (HP3) that have been placed on the Mars surface by the Instrument Deployment Arm (IDA). Besides geophys-ical data (which have definitely enriched and completed existing knowledge on the structure of Mars), the InSight instruments, togeth-er with orbiter observations and tests carried out on the soil with the IDA, have significantly increased the knowledge of the geologi-cal and geotechnical characteristics of the surface material at the InSight site, which is made up of a basaltic sand. In-situ data were also successfully compared with terrestrial previous estimates from terrestrial lab tests, carried out on various soil simulants. Small strain (elastic) parameters at small strains were derived from wave velocity measurements between the self-penetrating probe and the seismometer. Strength data were derived from both IDA operations and penetration data. The soil includes some pebbles within a somewhat cohesive sandy matrix, limiting the heat probe penetration to only 40 cm length. Thermal data were also obtained, allowing for some thermo-elastic modelling of the effect of the Phobos (one of the “Moons” of Mars) eclipses. Elastic data were also derived from the effects of wind on the ground, detected by SEIS
Mucinous cystic neoplasms of the mesentery: a case report and review of the literature
<p>Abstract</p> <p>Background</p> <p>Mucinous cystic neoplasms arise in the ovary and various extra-ovarian sites. While their pathogenesis remains conjectural, their similarities suggest a common pathway of development. There have been rare reports involving the mesentery as a primary tumour site.</p> <p>Case presentation</p> <p>A cystic mass of uncertain origin was demonstrated radiologically in a 22 year old female with chronic abdominal pain. At laparotomy, the mass was fixed within the colonic mesentery. Histology demonstrated a benign mucinous cystadenoma.</p> <p>Methods and results</p> <p>We review the literature on mucinous cystic neoplasms of the mesentery and report on the pathogenesis, biologic behavior, diagnosis and treatment of similar extra-ovarian tumors. We propose an updated classification of mesenteric cysts and cystic tumors.</p> <p>Conclusion</p> <p>Mucinous cystic neoplasms of the mesentery present almost exclusively in women and must be considered in the differential diagnosis of mesenteric tumors. Only full histological examination of a mucinous cystic neoplasm can exclude a borderline or malignant component. An updated classification of mesenteric cysts and cystic tumors is proposed.</p
A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site
This article discusses relevant physical properties of the regolith at the Mars InSight landing site as understood prior to landing of the spacecraft. InSight will land in the northern lowland plains of Mars, close to the equator, where the regolith is estimated to be ≥3--5 m thick. These investigations of physical properties have relied on data collected from Mars orbital measurements, previously collected lander and rover data, results of studies of data and samples from Apollo lunar missions, laboratory measurements on regolith simulants, and theoretical studies. The investigations include changes in properties with depth and temperature. Mechanical properties investigated include density, grain-size distribution, cohesion, and angle of internal friction. Thermophysical properties include thermal inertia, surface emissivity and albedo, thermal conductivity and diffusivity, and specific heat. Regolith elastic properties not only include parameters that control seismic wave velocities in the immediate vicinity of the Insight lander but also coupling of the lander and other potential noise sources to the InSight broadband seismometer. The related properties include Poisson’s ratio, P- and S-wave velocities, Young’s modulus, and seismic attenuation. Finally, mass diffusivity was investigated to estimate gas movements in the regolith driven by atmospheric pressure changes. Physical properties presented here are all to some degree speculative. However, they form a basis for interpretation of the early data to be returned from the InSight mission.Additional co-authors: Nick Teanby and Sharon Keda
The InSight HP3 Penetrator (Mole) on Mars: Soil Properties Derived from the Penetration Attempts and Related Activities
The NASA InSight Lander on Mars includes the Heat Flow and Physical Properties Package HP3 to measure the surface heat flow of the planet. The package uses temperature sensors that would have been brought to the target depth of 3–5 m by a small penetrator, nicknamed the mole. The mole requiring friction on its hull to balance remaining recoil from its hammer mechanism did not penetrate to the targeted depth. Instead, by precessing about a point midway along its hull, it carved a 7 cm deep and 5–6 cm wide pit and reached a depth of initially 31 cm. The root cause of the failure – as was determined through an extensive, almost two years long campaign – was a lack of friction in an unexpectedly thick cohesive duricrust. During the campaign – described in detail in this paper – the mole penetrated further aided by friction applied using the scoop at the end of the robotic Instrument Deployment Arm and by direct support by the latter. The mole tip finally reached a depth of about 37 cm, bringing the mole back-end 1–2 cm below the surface. It reversed its downward motion twice during attempts to provide friction through pressure on the regolith instead of directly with the scoop to the mole hull. The penetration record of the mole was used to infer mechanical soil parameters such as the penetration resistance of the duricrust of 0.3–0.7 MPa and a penetration resistance of a deeper layer (> 30 cm depth) of 4.9±0.4 MPa. Using the mole’s thermal sensors, thermal conductivity and diffusivity were measured. Applying cone penetration theory, the resistance of the duricrust was used to estimate a cohesion of the latter of 2–15 kPa depending on the internal friction angle of the duricrust. Pushing the scoop with its blade into the surface and chopping off a piece of duricrust provided another estimate of the cohesion of 5.8 kPa. The hammerings of the mole were recorded by the seismometer SEIS and the signals were used to derive P-wave and S-wave velocities representative of the topmost tens of cm of the regolith. Together with the density provided by a thermal conductivity and diffusivity measurement using the mole’s thermal sensors, the elastic moduli were calculated from the seismic velocities. Using empirical correlations from terrestrial
soil studies between the shear modulus and cohesion, the previous cohesion estimates were found to be consistent with the elastic moduli. The combined data were used to derive a model of the regolith that has an about 20 cm thick duricrust underneath a 1 cm thick unconsolidated layer of sand mixed with dust and above another 10 cm of unconsolidated sand. Underneath the latter, a layer more resistant to penetration and possibly containing debris from a small impact crater is inferred. The thermal conductivity increases from 14 mW/m K to 34 mW/m K through the 1 cm sand/dust layer, keeps the latter value in the duricrust and the sand layer underneath and then increases to 64 mW/m K in the sand/gravel layer below
- …