15 research outputs found

    Generic heurorithm of innovation management from generating ideas to commercialization

    Get PDF
    The problem of providing an integrated scientific, methodological and information support of the innovation process, covering all its stages including the creative phase, at which novelties are created (solving the problem of conceptual design), is considered. The generic heurorithm (heuristic algorithm) of the innovation management serves as the methodological basis for the implementation of the information support and management innovation system. It is a standard program tool for corporative innovation infrastructure for use in universities, and is intended for describing, accounting and management of ideas at different stages of the innovation cycle. Heurorithm has a modular structure and is represented by a graphical notation systems working schemes. Its schemes reflect a variety of means to support innovation: scientific and methodological support, methods, instructional materials, information resources and a program toolkit (including components of information support and innovation management system). These means correspond to the heuristic components of activities and heuristic information facilities: weakly formalized creative processes and experience gained during their realization. Availability and detailing of heuristics generated and used at different stages of the innovation process for its intensification, is one of the main differences between the developed heurorithm and known organizational charts of innovative activity. On the basis of the generic heurorithm in the system of information support and innovation management an interactive navigator on the stages of the innovation process and means of its support is developed. The research was conducted at the financial support of the state e represented by the Ministry of Education and Science of the Russian Federation (the unique identifier of the research work RFMEFI57314X0007).peer-reviewe

    Development regularities of technical systems as a means of scientific, methodological and information support of idea and innovation management

    Get PDF
    In recent decades scientists are increasingly engaged in the identification and formulation of the laws of development of machinery, technology, and products (i.e. technical systems, or TS). Regularities of the TS development represent ascertained consistent trends of incremental changes of TS operational or structural properties, leading to the improvement of their consumer qualities. The article describes the development results of scientific and methodological bases of use of the TS development patterns to search for the best ways for their further enhancement. Informational and methodological approaches are suggested to create an automated innovation management information system based on the laws and regularities of the TS development. The research was conducted at the financial support of the state represented by the Ministry of Education and Science of the Russian Federation (the unique identifier of research work RFMEFI57314X0007).peer-reviewe

    High mitochondrial diversity of domesticated goats persisted among Bronze and Iron Age pastoralists in the Inner Asian Mountain Corridor

    Get PDF
    Goats were initially managed in the Near East approximately 10,000 years ago and spread across Eurasia as economically productive and environmentally resilient herd animals. While the geographic origins of domesticated goats (Capra hircus) in the Near East have been long-established in the zooarchaeological record and, more recently, further revealed in ancient genomes, the precise pathways by which goats spread across Asia during the early Bronze Age (ca. 3000 to 2500 cal BC) and later remain unclear. We analyzed sequences of hypervariable region 1 and cytochrome b gene in the mitochondrial genome (mtDNA) of goats from archaeological sites along two proposed transmission pathways as well as geographically intermediary sites. Unexpectedly high genetic diversity was present in the Inner Asian Mountain Corridor (IAMC), indicated by mtDNA haplotypes representing common A lineages and rarer C and D lineages. High mtDNA diversity was also present in central Kazakhstan, while only mtDNA haplotypes of lineage A were observed from sites in the Northern Eurasian Steppe (NES). These findings suggest that herding communities living in montane ecosystems were drawing from genetically diverse goat populations, likely sourced from communities in the Iranian Plateau, that were sustained by repeated interaction and exchange. Notably, the mitochondrial genetic diversity associated with goats of the IAMC also extended into the semi-arid region of central Kazakhstan, while NES communities had goats reflecting an isolated founder population, possibly sourced via eastern Europe or the Caucasus region

    Ancient genomic time transect from the Central Asian Steppe unravels the history of the Scythians

    Get PDF
    The Scythians were a multitude of horse-warrior nomad cultures dwelling in the Eurasian steppe during the first millennium BCE. Because of the lack of first-hand written records, little is known about the origins and relations among the different cultures. To address these questions, we produced genome-wide data for 111 ancient individuals retrieved from 39 archaeological sites from the first millennia BCE and CE across the Central Asian Steppe. We uncovered major admixture events in the Late Bronze Age forming the genetic substratum for two main Iron Age gene-pools emerging around the Altai and the Urals respectively. Their demise was mirrored by new genetic turnovers, linked to the spread of the eastern nomad empires in the first centuries CE. Compared to the high genetic heterogeneity of the past, the homogenization of the present-day Kazakhs gene pool is notable, likely a result of 400 years of strict exogamous social rules.Introduction Results - The IA transition in the Kazakh Steppe - Admixture modeling of IA steppe populations - Post-IA genetic turnovers in the Kazakh Steppe - Dating ancient admixture - Present-day Kazakhs Discussion Material and methods - Radiocarbon dating - DNA extraction, library preparations, and sequencing - Modern DNA genotyping and quality controls - Ancient DNA data processing -- Raw data -- Authentication and contamination estimate -- Genotyping -- Sex determination -- Genetic relatedness estimation - Uniparental haplogroup assignment - Population structure analyses - Individual labeling and population grouping criteria - F-statistics and ancestry modeling - Admixture dating - CHROMOPAINTER and fineSTRUCTURE analyse

    The formation of human populations in South and Central Asia

    Get PDF
    By sequencing 523 ancient humans, we show that the primary source of ancestry in modern South Asians is a prehistoric genetic gradient between people related to early hunter-gatherers of Iran and Southeast Asia. After the Indus Valley Civilization’s decline, its people mixed with individuals in the southeast to form one of the two main ancestral populations of South Asia, whose direct descendants live in southern India. Simultaneously, they mixed with descendants of Steppe pastoralists who, starting around 4000 years ago, spread via Central Asia to form the other main ancestral population. The Steppe ancestry in South Asia has the same profile as that in Bronze Age Eastern Europe, tracking a movement of people that affected both regions and that likely spread the distinctive features shared between Indo-Iranian and Balto-Slavic languages

    The genomic formation of South and Central Asia

    No full text
    The genetic formation of Central and South Asian populations has been unclear because of an absence of ancient DNA. To address this gap, we generated genome-wide data from 362 ancient individuals, including the first from eastern Iran, Turan (Uzbekistan, Turkmenistan, and Tajikistan), Bronze Age Kazakhstan, and South Asia. Our data reveal a complex set of genetic sources that ultimately combined to form the ancestry of South Asians today. We document a southward spread of genetic ancestry from the Eurasian Steppe, correlating with the archaeologically known expansion of pastoralist sites from the Steppe to Turan in the Middle Bronze Age (2300-1500 BCE). These Steppe communities mixed genetically with peoples of the Bactria Margiana Archaeological Complex (BMAC) whom they encountered in Turan (primarily descendants of earlier agriculturalists of Iran), but there is no evidence that the main BMAC population contributed genetically to later South Asians. Instead, Steppe communities integrated farther south throughout the 2nd millennium BCE, and we show that they mixed with a more southern population that we document at multiple sites as outlier individuals exhibiting a distinctive mixture of ancestry related to Iranian agriculturalists and South Asian hunter-gathers. We call this group Indus Periphery because they were found at sites in cultural contact with the Indus Valley Civilization (IVC) and along its northern fringe, and also because they were genetically similar to post-IVC groups in the Swat Valley of Pakistan. By co-analyzing ancient DNA and genomic data from diverse present-day South Asians, we show that Indus Periphery-related people are the single most important source of ancestry in South Asia —} consistent with the idea that the Indus Periphery individuals are providing us with the first direct look at the ancestry of peoples of the IVC {— and we develop a model for the formation of present-day South Asians in terms of the temporally and geographically proximate sources of Indus Periphery-related, Steppe, and local South Asian hunter-gatherer-related ancestry. Our results show how ancestry from the Steppe genetically linked Europe and South Asia in the Bronze Age, and identifies the populations that almost certainly were responsible for spreading Indo-European languages across much of Eurasia
    corecore