143 research outputs found

    A Wire Position Monitor System for the 1.3 GHZ Tesla-Style Cryomodule at the Fermilab New-Muon-Lab Accelerator

    Full text link
    The first cryomodule for the beam test facility at the Fermilab New-Muon-Lab building is currently under RF commissioning. Among other diagnostics systems, the transverse position of the helium gas return pipe with the connected 1.3 GHz SRF accelerating cavities is measured along the ~15 m long module using a stretched-wire position monitoring system. An overview of the wire position monitor system technology is given, along with preliminary results taken at the initial module cool down, and during further testing. As the measurement system offers a high resolution, we also discuss options for use as a vibration detector.Comment: 4 pp. 15th International Conference on RF Superconductivity (SRF2011). 25-29 Jul 2011. Chicago, Illinois, US

    A Modern Ethernet Data Acquisition Architecture for Fermilab Beam Instrumentation

    Full text link
    The Fermilab Accelerator Division, Instrumentation Department is adopting an open-source framework to replace our embedded VME-based data acquisition systems. Utilizing an iterative methodology, we first moved to embedded Linux, removing the need for VxWorks. Next, we adopted Ethernet on each data acquisition module eliminating the need for the VME backplane in addition to communicating with a rack mount server. Development of DDCP (Distributed Data Communications Protocol), allowed for an abstraction between the firmware and software layers. Each data acquisition module was adapted to read out using 1 GbE and aggregated at a switch which up linked to a 10 GbE network. Current development includes scaling the system to aggregate more modules, to increase bandwidth to support multiple systems and to adopt MicroTCA as a crate technology. The architecture was utilized on various beamlines around the Fermilab complex including PIP2IT, FAST/IOTA and the Muon Delivery Ring. In summary, we were able to develop a data acquisition framework which incrementally replaces VxWorks & VME hardware as well as increases our total bandwidth to 10 Gbit/s using off the shelf Ethernet technology

    Instrument Front-Ends at Fermilab During Run II

    Full text link
    The optimization of an accelerator relies on the ability to monitor the behavior of the beam in an intelligent and timely fashion. The use of processor-driven front-ends allowed for the deployment of smart systems in the field for improved data collection and analysis during Run II. This paper describes the implementation of the two main systems used: National Instruments LabVIEW running on PCs, and WindRiver's VxWorks real-time operating system running in a VME crate processor.Comment: 8 p

    High Resolution BPM Upgrade for the ATF Damping Ring at KEK

    Full text link
    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and processing, and also implements a new automatic gain error correction schema. The technical concept and realization as well as results of beam studies are presented.Comment: 3 pp. 10th European Workshop on Beam Diagnostics and Instrumentation for Particle Accelerators DIPAC 2011, 16-18 May 2011. Hamburg, German

    Comparison of threshold selection methods for microarray gene co-expression matrices

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Network and clustering analyses of microarray co-expression correlation data often require application of a threshold to discard small correlations, thus reducing computational demands and decreasing the number of uninformative correlations. This study investigated threshold selection in the context of combinatorial network analysis of transcriptome data.</p> <p>Findings</p> <p>Six conceptually diverse methods - based on number of maximal cliques, correlation of control spots with expressed genes, top 1% of correlations, spectral graph clustering, Bonferroni correction of p-values, and statistical power - were used to estimate a correlation threshold for three time-series microarray datasets. The validity of thresholds was tested by comparison to thresholds derived from Gene Ontology information. Stability and reliability of the best methods were evaluated with block bootstrapping.</p> <p>Two threshold methods, number of maximal cliques and spectral graph, used information in the correlation matrix structure and performed well in terms of stability. Comparison to Gene Ontology found thresholds from number of maximal cliques extracted from a co-expression matrix were the most biologically valid. Approaches to improve both methods were suggested.</p> <p>Conclusion</p> <p>Threshold selection approaches based on network structure of gene relationships gave thresholds with greater relevance to curated biological relationships than approaches based on statistical pair-wise relationships.</p

    Extracting Gene Networks for Low-Dose Radiation Using Graph Theoretical Algorithms

    Get PDF
    Genes with common functions often exhibit correlated expression levels, which can be used to identify sets of interacting genes from microarray data. Microarrays typically measure expression across genomic space, creating a massive matrix of co-expression that must be mined to extract only the most relevant gene interactions. We describe a graph theoretical approach to extracting co-expressed sets of genes, based on the computation of cliques. Unlike the results of traditional clustering algorithms, cliques are not disjoint and allow genes to be assigned to multiple sets of interacting partners, consistent with biological reality. A graph is created by thresholding the correlation matrix to include only the correlations most likely to signify functional relationships. Cliques computed from the graph correspond to sets of genes for which significant edges are present between all members of the set, representing potential members of common or interacting pathways. Clique membership can be used to infer function about poorly annotated genes, based on the known functions of better-annotated genes with which they share clique membership (i.e., “guilt-by-association”). We illustrate our method by applying it to microarray data collected from the spleens of mice exposed to low-dose ionizing radiation. Differential analysis is used to identify sets of genes whose interactions are impacted by radiation exposure. The correlation graph is also queried independently of clique to extract edges that are impacted by radiation. We present several examples of multiple gene interactions that are altered by radiation exposure and thus represent potential molecular pathways that mediate the radiation response

    Inferring gene coexpression networks for low dose ionizing radiation using graph theoretical algorithms and systems genetics

    Get PDF
    Background Biological data generated through large scale -omics technologies have resulted in a new paradigm in the study of biological systems. Instead of focusing on individual genes or proteins these technologies enable us to extract biological networks using powerful computing and statistical algorithms that are scalable to very large datasets. Materials and methods We have developed a tool chain using novel graph algorithms to extract gene coexpression networks from microarray data. We highlight implementation of our tool chain to investigate the effects of in vivo low dose ionizing radiation treatments on mice. We are using systems genetics approach to investigate the biological effects of low dose (10 cGy) ionizing radiation. We measured the base line gene expression profile from spleen tissue of BXD recombinant inbred mice using Illumina microarrays. The data was filtered using coefficient of variance after robust spline normalization and variance stabilizing transformation. A graph was then derived from this data, with probes as vertices and edges between them representing correlations. The graph was analyzed using our toolkit to find the size and number of maximal cliques. We deployed another tool called paraclique that relaxes clique’s requirement that every edge be present between all vertices. Paraclique enables us to account for inherent noise in the microarray data and stochastic nature of biological processes. Using immunophenotype data from the baseline BXD mice, we employed biclique analysis to determine interactions between genotypes and immunophenotypes (%CD4, %CD3, LN T:B, %CD8, and LN CD4:CD8). We also extracted eQTLs from BXD data using QTL-Reaper from base line gene expression profiles. 1881 transcripts were associated with 686 loci. The eQTLs were classified as cis or trans according to their genomic positions. Besides population level studies we also investigated the differential effect of low dose and high dose (1Gy) of ionizing radiations on spleen gene expression in inbred parental strains (C57BL/6J and DBA/2J) of BXD recombinant inbred mice as well as BALB/c mice, a known radiation-sensitive strain

    A systematic comparison of genome-scale clustering algorithms

    Get PDF
    Background: A wealth of clustering algorithms has been applied to gene co-expression experiments. These algorithms cover a broad range of approaches, from conventional techniques such as k-means and hierarchical clustering, to graphical approaches such as k-clique communities, weighted gene co-expression networks (WGCNA) and paraclique. Comparison of these methods to evaluate their relative effectiveness provides guidance to algorithm selection, development and implementation. Most prior work on comparative clustering evaluation has focused on parametric methods. Graph theoretical methods are recent additions to the tool set for the global analysis and decomposition of microarray co-expression matrices that have not generally been included in earlier methodological comparisons. In the present study, a variety of parametric and graph theoretical clustering algorithms are compared using well-characterized transcriptomic data at a genome scale from Saccharomyces cerevisiae. Methods: For each clustering method under study, a variety of parameters were tested. Jaccard similarity was used to measure each clusters agreement with every GO and KEGG annotation set, and the highest Jaccard score was assigned to the cluster. Clusters were grouped into small, medium, and large bins, and the Jaccard score of the top five scoring clusters in each bin were averaged and reported as the best average top 5 (BAT5) score for the particular method. Results: Clusters produced by each method were evaluated based upon the positive match to known pathways. This produces a readily interpretable ranking of the relative effectiveness of clustering on the genes. Methods were also tested to determine whether they were able to identify clusters consistent with those identified by other clustering methods. Conclusions: Validation of clusters against known gene classifications demonstrate that for this data, graph-based techniques outperform conventional clustering approaches, suggesting that further development and application of combinatorial strategies is warranted

    Intra- and inter-individual genetic differences in gene expression

    Get PDF
    Genetic variation is known to influence the amount of mRNA produced by a gene. Given that the molecular machines control mRNA levels of multiple genes, we expect genetic variation in the components of these machines would influence multiple genes in a similar fashion. In this study we show that this assumption is correct by using correlation of mRNA levels measured independently in the brain, kidney or liver of multiple, genetically typed, mice strains to detect shared genetic influences. These correlating groups of genes (CGG) have collective properties that account for 40-90% of the variability of their constituent genes and in some cases, but not all, contain genes encoding functionally related proteins. Critically, we show that the genetic influences are essentially tissue specific and consequently the same genetic variations in the one animal may up-regulate a CGG in one tissue but down-regulate the same CGG in a second tissue. We further show similarly paradoxical behaviour of CGGs within the same tissues of different individuals. The implication of this study is that this class of genetic variation can result in complex inter- and intra-individual and tissue differences and that this will create substantial challenges to the investigation of phenotypic outcomes, particularly in humans where multiple tissues are not readily available.&#xd;&#xa;&#xd;&#xa
    corecore