207 research outputs found

    Flow of the West Antarctic Ice Sheet on the continental margin of the Bellingshausen Sea at the Last Glacial Maximum

    Get PDF
    Geophysical data show that during the last glaciation the West Antarctic Ice Sheet (WAIS) drained to the continental shelf edge of the Bellingshausen Sea through a cross-shelf bathymetric trough (Belgica Trough) as a grounded, fast flowing, ice stream. The drainage basin feeding this ice stream probably encompassed southwestern Palmer Land, parts of southern Alexander Island, and the Bryan Coast of Ellsworth Land, with an area exceeding 200,000 km2. On the inner continental shelf, streamlined bedrock and drumlins mapped by swath bathymetry show that the ice stream was fed by convergent ice flow draining from Eltanin Bay and bays to the east, as well as by ice draining the southern part of the Antarctic Peninsula Ice Sheet through the Ronne Entrance. The presence of a paleoice stream in Belgica Trough is indicated by megascale glacial lineations formed in soft till and a trough mouth fan on the continental margin. Grounding zone wedges on the inner and midshelf record ice marginal stillstands during deglaciation and imply a staggered pattern of ice sheet retreat. These new data indicate an extensive WAIS at the Last Glacial Maximum (LGM) on the Bellingshausen Sea continental margin, which advanced to the shelf edge. In conjunction with ice sheet reconstructions from the Antarctic Peninsula and Pine Island Bay, this implies a regionally extensive ice sheet configuration during the LGM along the Antarctic Peninsula, Bellingshausen Sea, and Amundsen Sea margins, with fast flowing ice streams draining the WAIS and Antarctic Peninsula Ice Sheet to the continental shelf edge

    Icebergs in the North Atlantic: Modelling circulation changes and glacio-marine deposition

    Get PDF
    In order to investigate meltwater events in the North Atlantic, a simple iceberg generation, drift, and melting routine was implemented in a high-resolution OGCM. Starting from the modelled last glacial state, every 25th day cylindrical model icebergs 300 meters high were released at 32 specific points along the coasts. Icebergs launched at the Barents Shelf margin spread a light meltwater lid over the Norwegian and Greenland Seas, shutting down the deep convection and the anti-clockwise circulation in this area. Due to the constraining ocean circulation, the icebergs produce a tongue of relatively cold and fresh water extending eastward from Hudson Strait that must develop at this location, regardless of iceberg origin. From the total amount of freshwater inferred by the icebergs, the thickness of the deposited IRD could be calculated in dependance of iceberg sediment concentration. In this way, typical extent and thickness of Heinrich layers could be reproduced, running the model for 250 years of steady state with constant iceberg meltwater inflow

    Contamination Control and Assay Results for the Majorana Demonstrator Ultra Clean Components

    Full text link
    The MAJORANA DEMONSTRATOR is a neutrinoless double beta decay experiment utilizing enriched Ge-76 detectors in 2 separate modules inside of a common solid shield at the Sanford Underground Research Facility. The DEMONSTRATOR has utilized world leading assay sensitivities to develop clean materials and processes for producing ultra-pure copper and plastic components. This experiment is now operating, and initial data provide new insights into the success of cleaning and processing. Post production copper assays after the completion of Module 1 showed an increase in U and Th contamination in finished parts compared to starting bulk material. A revised cleaning method and additional round of surface contamination studies prior to Module 2 construction have provided evidence that more rigorous process control can reduce surface contamination. This article describes the assay results and discuss further studies to take advantage of assay capabilities for the purpose of maintaining ultra clean fabrication and process design.Comment: Proceedings of Low Radioactivity Techniques (LRT May 2017, Seoul
    • …
    corecore