2,793 research outputs found

    The expanded diversity of methylophilaceae from Lake Washington through cultivation and genomic sequencing of novel ecotypes.

    Get PDF
    We describe five novel Methylophilaceae ecotypes from a single ecological niche in Lake Washington, USA, and compare them to three previously described ecotypes, in terms of their phenotype and genome sequence divergence. Two of the ecotypes appear to represent novel genera within the Methylophilaceae. Genome-based metabolic reconstruction highlights metabolic versatility of Methylophilaceae with respect to methylotrophy and nitrogen metabolism, different ecotypes possessing different combinations of primary substrate oxidation systems (MxaFI-type methanol dehydrogenase versus XoxF-type methanol dehydrogenase; methylamine dehydrogenase versus N-methylglutamate pathway) and different potentials for denitrification (assimilatory versus respiratory nitrate reduction). By comparing pairs of closely related genomes, we uncover that site-specific recombination is the main means of genomic evolution and strain divergence, including lateral transfers of genes from both closely- and distantly related taxa. The new ecotypes and the new genomes contribute significantly to our understanding of the extent of genomic and metabolic diversity among organisms of the same family inhabiting the same ecological niche. These organisms also provide novel experimental models for studying the complexity and the function of the microbial communities active in methylotrophy

    Analysis of nucleus-nucleus collisions at high energies and Random Matrix Theory

    Full text link
    We propose a novel statistical approach to the analysis of experimental data obtained in nucleus-nucleus collisions at high energies which borrows from methods developed within the context of Random Matrix Theory. It is applied to the detection of correlations in momentum distributions of emitted particles. We find good agreement between the results obtained in this way and a standard analysis based on the method of effective mass spectra and two-pair correlation function often used in high energy physics. The method introduced here is free from unwanted background contributions.Comment: 11 pages, 10 figure

    Comparative transcriptomics in three Methylophilaceae species uncover different strategies for environmental adaptation

    Get PDF
    We carried out whole transcriptome analysis of three species of Methylophilaceae, Methylotenera mobilis, Methylotenera versatilis and Methylovorus glucosotrophus, in order to determine which metabolic pathways are actively transcribed in cultures grown in laboratory on C1 substrates and how metabolism changes under semi-in situ conditions. Comparative analyses of the transcriptomes were used to probe the metabolic strategies utilized by each of the organisms in the environment. Our analysis of transcript abundance data focused on changes in expression of methylotrophy metabolic modules, as well as on identifying any functional modules with pronounced response to in situ conditions compared to a limited set of laboratory conditions, highlighting their potential role in environmental adaptation. We demonstrate that transcriptional responses to environmental conditions involved both methylotrophy and non-methylotrophy metabolic modules as well as modules responsible for functions not directly connected to central metabolism. Our results further highlight the importance of XoxF enzymes that were previously demonstrated to be highly expressed in situ and proposed to be involved in metabolism of methanol by Methylophilaceae. At the same time, it appears that different species employ different homologous Xox systems as major metabolic modules. This study also reinforces prior observations of the apparent importance of the methylcitric acid cycle in the Methylotenera species and its role in environmental adaptation. High transcription from the respective gene clusters and pronounced response to in situ conditions, along with the reverse expression pattern for the ribulose monophosphate pathway that is the major pathway for carbon assimilation in laboratory conditions suggest that a switch in central metabolism of Methylotenera takes place in response to in situ conditions. The nature of the metabolite(s) processed via this pathway still remains unknown. Of the functions not related to central metabolism, flagellum and fimbria synthesis functions appeared to be of significance for environmental adaptation, based on their high abundance and differential expression. Our data demonstrate that, besides shared strategies, the organisms employed in this study also utilize strategies unique to each species, suggesting that the genomic divergence plays a role in environmental adaptation

    Biophotonics approach for the study of leukocyte activation

    Get PDF
    Leukocytes are the main cells of immune system, but also contribute to other systems and participate in pathogenesis of different diseases. In particular, leukocytes are involved in the progression of diabetic retinopathy due to their hyperactivation in diabetes. However, a connection between diabetes and the dysfunction of leukocytes is poorly understood. For a more complete picture, studies of the leukocytes activation under the influence of various substances are necessary. Arachidonic acid (AA) and its metabolites are the strongest activating factors of leukocytes. However, the studies involving AA are complicated because it is water-insoluble. Here we describe the method to study activation using photolabile analogs of AA

    Проблемы и перспективы подготовки специалистов для предприятий ядерно-топливного комплекса Украины

    Get PDF
    Abstract. Purpose: To open problematics and to propose ways of development of production, scientific and educational spheres that providing nuclear-and-fuel power industry of Ukraine. Methods: The current state of uranium, zirconium and accompanying enterprises and also preparation of workers, engineering and highly-qualified personnel according to implementation of the State target economic program “Uranium of Ukraine” is analyzed. Findings: Problematics in development of production, scientific and educational spheres on the way of creation of closed nuclear-and-fuel cycle in Ukraine is analyzed. Originality: Creation of administrative-and-pedagogic, scientific-research inter-industry collective that will be capable to successful solution of production, scientific and educational problems in structural divisions of nuclear-and-fuel cycle of Ukraine. Practical implications: The foundation of creation of corporate educational institution of power orientations in Ukraine which systemically solves priorities in production, scientific and educational spheres of nuclear-and-fuel cycle is laid

    Test beam studies of the TRD prototype filled with different gas mixtures based on Xe, Kr, and Ar

    Full text link
    Towards the end of LHC Run1, gas leaks were observed in some parts of the Transition Radiation Tracker (TRT) of ATLAS. Due to these leaks, primary Xenon based gas mixture was replaced with Argon based mixture in various parts. Test-beam studies with a dedicated Transition Radiation Detector (TRD) prototype were carried out in 2015 in order to understand transition radiation performance with mixtures based on Argon and Krypton. We present and discuss the results of these test-beam studies with different active gas compositions.Comment: 5 pages,12 figures, The 2nd International Conference on Particle Physics and Astrophysics (ICPPA-2016); Acknowledgments section correcte

    РАЗРАБОТКА «ДОРОЖНОЙ КАРТЫ» ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ФИНАНСИРОВАНИЯ НИР ВУЗОВ

    Get PDF
    Various ways of financing of universityscience are considered. The ratio in financing of university science of varioussources are presented. Possibilities ofsale of the patented technologies areshown.Рассмотреныразличныепутифинансирования университетской науки. Представленосоотношениевфинансировании университетской науки различных источников. Показаны возможности продажизапатентованныхтехнологи
    corecore