24 research outputs found

    Methodological Review and Revision of the Global Hunger Index

    Full text link

    An Optimization Model for Technology Adoption of Marginalized Smallholders: Theoretical Support for Matching Technological and Institutional Innovations

    Full text link

    Harvesting Solar Power in India

    Full text link

    Institutional Environments for Enabling Agricultural Technology Innovations: The Role of Land Rights in Ethiopia, Ghana, India and Bangladesh

    Full text link

    Between Hope and Hype: Traditional Knowledge(s) Held by Marginal Communities

    Full text link

    Social Safety Nets for Food and Nutritional Security in India

    Full text link
    This paper brings together existing literature on the Mahatma Gandhi National Rural Employment Guarantee Act (MGNRGEA) and the Public Distribution System (PDS) in India, offering a narrative review of the evidence on impacts on food security, health and nutrition of beneficiaries. Both programs operate on a large scale and have the capacity to impact the factors leading to undernutrition. It is evident that despite the deficiencies in implementation, both the MGNREGA and the PDS are inclusive and reach the poor and the marginalized who are likely to also experience greater undernutrition and poor health. Data challenges have however prevented researchers from conducting studies that assess the ultimate impact of these two large-scale programs on health and nutrition. The evidence that exists suggests largely positive impacts indicating a clear potential to make these programs more nutrition sensitive not just by incorporating elements that would explicitly address nutritional concerns but also by directing specific attention to innovations that strengthen critical complementarities and synergies that exist between the two programs

    Food and Nutrition Security Indicators: A Review

    Full text link

    Temporal disaggregation of daily temperature and precipitation grid data for Norway

    No full text
    This paper presents a simple approach for the temporal disaggregation from daily to 3-hourly observed gridded temperature and precipitation (1 × 1 km2) on the national scale. The intended use of the disaggregated 3-hourly data is to recalibrate the hydrological model currently used by the Norwegian Water Resources and Energy Directorate (NVE) for daily flood forecasting. By adapting the hydrological model to a 3-hourly temporal scale, the flood forecasting can benefit from available meteorological forecasts with finer temporal resolution and can better represent critical events of short duration and at small spatial scales. By consulting the temporal patterns of a High-Resolution Limited-Area Model (HIRLAM) hindcast series for northern Europe with an hourly temporal and a 0.1° spatial resolution, existing daily 1 × 1 km2 grids for temperature and precipitation covering all of Norway (the seNorge data) were disaggregated into 3-hourly values for the time period September 1957 to December 2010. For the period 2000–05, the disaggregated 3-hourly temperature and precipitation data are validated against observed values from five meteorological stations and against 3-hourly data from the HIRLAM hindcast and daily seNorge data simply split into eight fractions. The results show that the disaggregated data perform best with anomaly correlation coefficients between 0.89 and 0.92 for temperature. With regard to precipitation, the disaggregated data also provide the highest correlations and the lowest errors. In addition, the disaggregated data prove to be best in estimating intervals without precipitation and tend to be most appropriate in estimating extreme precipitation with low occurrence probability (<20%)

    Hydro Explorer: An interactive web app to investigate changes in runoff timing and runoff seasonality all over the world

    No full text
    Climatic changes and anthropogenic modifications of the river basin or river network have the potential to fundamentally alter river runoff. In the framework of this study, we aim to analyze and present historic changes in runoff timing and runoff seasonality observed at river gauges all over the world. In this regard, we develop the Hydro Explorer, an interactive web app, which enables the investigation of >7,000 daily resolution discharge time series from the Global Runoff Data Centre (GRDC). The interactive nature of the developed web app allows for a quick comparison of gauges, regions, methods, and time frames. We illustrate the available analytical tools by investigating changes in runoff timing and runoff seasonality in the Rhine River Basin. Since we provide the source code of the application, existing analytical approaches can be modified, new methods added, and the tool framework can be re‐used to visualize other data sets.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659WOA Institution: UNIVERSITAET POTSDAM Blended DEAL: ProjektDEA
    corecore