32 research outputs found

    EDGAR: A software framework for the comparative analysis of prokaryotic genomes

    Get PDF
    Blom J, Albaum S, Doppmeier D, et al. EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinformatics. 2009;10(1): 154.Background:The introduction of next generation sequencing approaches has caused a rapid increase in the number of completely sequenced genomes. As one result of this development, it is now feasible to analyze large groups of related genomes in a comparative approach. A main task in comparative genomics is the identification of orthologous genes in different genomes and the classification of genes as core genes or singletons. Results: To support these studies EDGAR – ''Efficient Database framework for comparative Genome Analyses using BLAST score Ratios'' – was developed. EDGAR is designed to automatically perform genome comparisons in a high throughput approach. Comparative analyses for 582 genomes across 75 genus groups taken from the NCBI genomes database were conducted with the software and the results were integrated into an underlying database. To demonstrate a specific application case, we analyzed ten genomes of the bacterial genus Xanthomonas, for which phylogenetic studies were awkward due to divergent taxonomic systems. The resultant phylogeny EDGAR provided was consistent with outcomes from traditional approaches performed recently and moreover, it was possible to root each strain with unprecedented accuracy. Conclusion: EDGAR provides novel analysis features and significantly simplifies the comparative analysis of related genomes. The software supports a quick survey of evolutionary relationships and simplifies the process of obtaining new biological insights into the differential gene content of kindred genomes. Visualization features, like synteny plots or Venn diagrams, are offered to the scientific community through a web-based and therefore platform independent user interface http://edgar.cebitec.uni-bielefeld.de webcite, where the precomputed data sets can be browsed

    The missing link: Bordetella petrii is endowed with both the metabolic versatility of environmental bacteria and virulence traits of pathogenic Bordetellae

    Get PDF
    Gross R, Guzman CA, Sebaihia M, et al. The missing link: Bordetella petrii is endowed with both the metabolic versatility of environmental bacteria and virulence traits of pathogenic Bordetellae. BMC Genomics. 2008;9(1): 449.Background: Bordetella petrii is the only environmental species hitherto found among the otherwise host-restricted and pathogenic members of the genus Bordetella. Phylogenetically, it connects the pathogenic Bordetellae and environmental bacteria of the genera Achromobacter and Alcaligenes, which are opportunistic pathogens. B. petrii strains have been isolated from very different environmental niches, including river sediment, polluted soil, marine sponges and a grass root. Recently, clinical isolates associated with bone degenerative disease or cystic fibrosis have also been described. Results: In this manuscript we present the results of the analysis of the completely annotated genome sequence of the B. petrii strain DSMZ12804. B. petrii has a mosaic genome of 5,287,950 bp harboring numerous mobile genetic elements, including seven large genomic islands. Four of them are highly related to the clc element of Pseudomonas knackmussii B13, which encodes genes involved in the degradation of aromatics. Though being an environmental isolate, the sequenced B. petrii strain also encodes proteins related to virulence factors of the pathogenic Bordetellae, including the filamentous hemagglutinin, which is a major colonization factor of B. pertussis, and the master virulence regulator BvgAS. However, it lacks all known toxins of the pathogenic Bordetellae. Conclusion: The genomic analysis suggests that B. petrii represents an evolutionary link between free-living environmental bacteria and the host-restricted obligate pathogenic Bordetellae. Its remarkable metabolic versatility may enable B. petrii to thrive in very different ecological niches

    Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacterial spot of tomato and pepper is caused by four <it>Xanthomonas </it>species and is a major plant disease in warm humid climates. The four species are distinct from each other based on physiological and molecular characteristics. The genome sequence of strain 85-10, a member of one of the species, <it>Xanthomonas euvesicatoria </it>(<it>Xcv</it>) has been previously reported. To determine the relationship of the four species at the genome level and to investigate the molecular basis of their virulence and differing host ranges, draft genomic sequences of members of the other three species were determined and compared to strain 85-10.</p> <p>Results</p> <p>We sequenced the genomes of <it>X. vesicatoria </it>(<it>Xv</it>) strain 1111 (ATCC 35937), <it>X. perforans </it>(<it>Xp</it>) strain 91-118 and <it>X. gardneri </it>(<it>Xg</it>) strain 101 (ATCC 19865). The genomes were compared with each other and with the previously sequenced <it>Xcv </it>strain 85-10. In addition, the molecular features were predicted that may be required for pathogenicity including the type III secretion apparatus, type III effectors, other secretion systems, quorum sensing systems, adhesins, extracellular polysaccharide, and lipopolysaccharide determinants. Several novel type III effectors from <it>Xg </it>strain 101 and <it>Xv </it>strain 1111 genomes were computationally identified and their translocation was validated using a reporter gene assay. A homolog to Ax21, the elicitor of XA21-mediated resistance in rice, and a functional Ax21 sulfation system were identified in <it>Xcv</it>. Genes encoding proteins with functions mediated by type II and type IV secretion systems have also been compared, including enzymes involved in cell wall deconstruction, as contributors to pathogenicity.</p> <p>Conclusions</p> <p>Comparative genomic analyses revealed considerable diversity among bacterial spot pathogens, providing new insights into differences and similarities that may explain the diverse nature of these strains. Genes specific to pepper pathogens, such as the O-antigen of the lipopolysaccharide cluster, and genes unique to individual strains, such as novel type III effectors and bacteriocin genes, have been identified providing new clues for our understanding of pathogen virulence, aggressiveness, and host preference. These analyses will aid in efforts towards breeding for broad and durable resistance in economically important tomato and pepper cultivars.</p

    Joy of mathematical modelling: a forgotten perspective?

    No full text
    We argue the relevance of including an affective perspective in the mathematical modelling education research and emphasise its importance for the teaching and learning of mathematical modelling at all levels, especially at the university. Our argument is supported by a recent survey of mathematics lecturers’ views on mathematical modelling, several follow-up interviews, and a review of literature on mathematical modelling that relates to enjoyment, pleasure, and appreciation. Findings from the survey and the follow-up interviews indicate that there is a group of practitioners who hold strong views on the importance of enjoyment in doing and teaching mathematical modelling

    sRNA-Xcc1, an integron-encoded transposon- and plasmid-transferred trans-acting sRNA, is under the positive control of the key virulence regulators HrpG and HrpX of Xanthomonas campestris pathovar campestris

    No full text
    SRNA-Xcc1 is a trans-acting sRNA recently identified from the plant pathogenic bacterium Xanthomonas campestris pathovar campestris (Xcc). Here, the phylogenetic distribution, predicted secondary structure and regulation of expression of sRNA-Xcc1 were analyzed. The analysis showed (1) a total 81 sRNA-Xcc1 homologs that are found in some bacterial strains that are taxonomically unrelated, belonging to the α-, β-, γ- and δ-proteobacteria (2) that some sRNA-Xcc1 homologs are located in a plasmid-borne transposon or near a transposase coding gene, (3) that sRNA-Xcc1 is encoded by a integron gene cassette in Xcc and sRNA-Xcc1 homologs occur in integron gene cassettes of some uncultured bacteria and (4) that sRNA-Xcc1 homologs have a highly conserved sequence motif and a stable consensus secondary structure. These findings strongly support the idea that sRNA-Xcc1 represents a novel family of sRNAs which may be originally captured by integrons from natural environments and then spread among different bacterial species via horizontal gene transfer, possibly by means of transposons and plasmids. The expression analysis results demonstrated that the transcription of sRNA-Xcc1 is under the positive control of the key virulence regulators HrpG and HrpX, indicating that sRNA-Xcc1 may be involved in the virulence regulation of Xcc

    Insights into Genome Plasticity and Pathogenicity of the Plant Pathogenic Bacterium Xanthomonas campestris pv. vesicatoria Revealed by the Complete Genome Sequence

    No full text
    The gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria is the causative agent of bacterial spot disease in pepper and tomato plants, which leads to economically important yield losses. This pathosystem has become a well-established model for studying bacterial infection strategies. Here, we present the whole-genome sequence of the pepper-pathogenic Xanthomonas campestris pv. vesicatoria strain 85-10, which comprises a 5.17-Mb circular chromosome and four plasmids. The genome has a high G+C content (64.75%) and signatures of extensive genome plasticity. Whole-genome comparisons revealed a gene order similar to both Xanthomonas axonopodis pv. citri and Xanthomonas campestris pv. campestris and a structure completely different from Xanthomonas oryzae pv. oryzae. A total of 548 coding sequences (12.2%) are unique to X. campestris pv. vesicatoria. In addition to a type III secretion system, which is essential for pathogenicity, the genome of strain 85-10 encodes all other types of protein secretion systems described so far in gram-negative bacteria. Remarkably, one of the putative type IV secretion systems encoded on the largest plasmid is similar to the Icm/Dot systems of the human pathogens Legionella pneumophila and Coxiella burnetii. Comparisons with other completely sequenced plant pathogens predicted six novel type III effector proteins and several other virulence factors, including adhesins, cell wall-degrading enzymes, and extracellular polysaccharides
    corecore