196 research outputs found

    Twistorial phase space for complex Ashtekar variables

    Full text link
    We generalise the SU(2) spinor framework of twisted geometries developed by Dupuis, Freidel, Livine, Speziale and Tambornino to the Lorentzian case, that is the group SL(2,C). We show that the phase space for complex valued Ashtekar variables on a spinnetwork graph can be decomposed in terms of twistorial variables. To every link there are two twistors---one to each boundary point---attached. The formalism provides a new derivation of the solution space of the simplicity constraints of loop quantum gravity. Key properties of the EPRL spinfoam model are perfectly recovered.Comment: 18 pages, to appear in: Class. Quantum Gra

    Optimization of interneuron function by direct coupling of cell migration and axonal targeting

    Get PDF
    Neural circuit assembly relies on the precise synchronization of developmental processes, such as cell migration and axon targeting, but the cell-autonomous mechanisms coordinating these events remain largely unknown. Here we found that different classes of interneurons use distinct routes of migration to reach the embryonic cerebral cortex. Somatostatin-expressing interneurons that migrate through the marginal zone develop into Martinotti cells, one of the most distinctive classes of cortical interneurons. For these cells, migration through the marginal zone is linked to the development of their characteristic layer 1 axonal arborization. Altering the normal migratory route of Martinotti cells by conditional deletion of Mafb—a gene that is preferentially expressed by these cells—cell-autonomously disrupts axonal development and impairs the function of these cells in vivo. Our results suggest that migration and axon targeting programs are coupled to optimize the assembly of inhibitory circuits in the cerebral cortex

    Evolutionary History of Helicobacter pylori Sequences Reflect Past Human Migrations in Southeast Asia

    Get PDF
    The human population history in Southeast Asia was shaped by numerous migrations and population expansions. Their reconstruction based on archaeological, linguistic or human genetic data is often hampered by the limited number of informative polymorphisms in classical human genetic markers, such as the hypervariable regions of the mitochondrial DNA. Here, we analyse housekeeping gene sequences of the human stomach bacterium Helicobacter pylori from various countries in Southeast Asia and we provide evidence that H. pylori accompanied at least three ancient human migrations into this area: i) a migration from India introducing hpEurope bacteria into Thailand, Cambodia and Malaysia; ii) a migration of the ancestors of Austro-Asiatic speaking people into Vietnam and Cambodia carrying hspEAsia bacteria; and iii) a migration of the ancestors of the Thai people from Southern China into Thailand carrying H. pylori of population hpAsia2. Moreover, the H. pylori sequences reflect iv) the migrations of Chinese to Thailand and Malaysia within the last 200 years spreading hspEasia strains, and v) migrations of Indians to Malaysia within the last 200 years distributing both hpAsia2 and hpEurope bacteria. The distribution of the bacterial populations seems to strongly influence the incidence of gastric cancer as countries with predominantly hspEAsia isolates exhibit a high incidence of gastric cancer while the incidence is low in countries with a high proportion of hpAsia2 or hpEurope strains. In the future, the host range expansion of hpEurope strains among Asian populations, combined with human motility, may have a significant impact on gastric cancer incidence in Asia

    Estimating Dengue Transmission Intensity from Case-Notification Data from Multiple Countries

    No full text
    Despite being the most widely distributed mosquito-borne viral infection, estimates of dengue transmission intensity and associated burden remain ambiguous. With advances in the development of novel control measures, obtaining robust estimates of average dengue transmission intensity is key for assessing the burden of disease and the likely impact of interventions.We estimated the force of infection (λ) and corresponding basic reproduction numbers (R0) by fitting catalytic models to age-stratified incidence data identified from the literature. We compared estimates derived from incidence and seroprevalence data and assessed the level of under-reporting of dengue disease. In addition, we estimated the relative contribution of primary to quaternary infections to the observed burden of dengue disease incidence. The majority of R0 estimates ranged from one to five and the force of infection estimates from incidence data were consistent with those previously estimated from seroprevalence data. The baseline reporting rate (or the probability of detecting a secondary infection) was generally low (<25%) and varied within and between countries.As expected, estimates varied widely across and within countries, highlighting the spatio-temporally heterogeneous nature of dengue transmission. Although seroprevalence data provide the maximum information, the incidence models presented in this paper provide a method for estimating dengue transmission intensity from age-stratified incidence data, which will be an important consideration in areas where seroprevalence data are not available

    Quantifying the Emergence of Dengue in Hanoi, Vietnam: 1998–2009

    Get PDF
    Dengue is the most common vector-borne viral disease of humans, causing an estimated 50 million cases per year. The number of countries affected by dengue has increased dramatically in the last 50 years and dengue is now a major public health problem in large parts of the tropical and subtropical world. It is of considerable importance to understand the factors that determine how dengue becomes newly established in areas where the risk of dengue was previously small. Hanoi in North Vietnam is a large city where dengue appears to be emerging. We analyzed 12 years of dengue surveillance data in order to characterize the temporal and spatial epidemiology of dengue in Hanoi and to establish if dengue incidence has been increasing. After excluding the two major outbreak years of 1998 and 2009 and correcting for changes in population age structure over time, we found there was a significant annual increase in the incidence of notified dengue cases over the period 1999–2008. Dengue cases were concentrated in young adults in the highly urban central areas of Hanoi. This study indicates that dengue transmission is increasing in Hanoi and provides a platform for further studies of the underlying drivers of this emergence

    Autoantibodies against type I IFNs in humans with alternative NF-κB pathway deficiency

    Get PDF

    Evolutionary Computation, Optimization and Learning Algorithms for Data Science

    Get PDF
    A large number of engineering, science and computational problems have yet to be solved in a computationally efficient way. One of the emerging challenges is how evolving technologies grow towards autonomy and intelligent decision making. This leads to collection of large amounts of data from various sensing and measurement technologies, e.g., cameras, smart phones, health sensors, smart electricity meters, and environment sensors. Hence, it is imperative to develop efficient algorithms for generation, analysis, classification, and illustration of data. Meanwhile, data is structured purposefully through different representations, such as large-scale networks and graphs. We focus on data science as a crucial area, specifically focusing on a curse of dimensionality (CoD) which is due to the large amount of generated/sensed/collected data. This motivates researchers to think about optimization and to apply nature-inspired algorithms, such as evolutionary algorithms (EAs) to solve optimization problems. Although these algorithms look un-deterministic, they are robust enough to reach an optimal solution. Researchers do not adopt evolutionary algorithms unless they face a problem which is suffering from placement in local optimal solution, rather than global optimal solution. In this chapter, we first develop a clear and formal definition of the CoD problem, next we focus on feature extraction techniques and categories, then we provide a general overview of meta-heuristic algorithms, its terminology, and desirable properties of evolutionary algorithms

    Vertebrate Paralogous MEF2 Genes: Origin, Conservation, and Evolution

    Get PDF
    BACKGROUND: The myocyte enhancer factor 2 (MEF2) gene family is broadly expressed during the development and maintenance of muscle cells. Although a great deal has been elucidated concerning MEF2 transcription factors' regulation of specific gene expression in diverse programs and adaptive responses, little is known about the origin and evolution of the four members of the MEF2 gene family in vertebrates. METHODOLOGY/PRINCIPAL FINDINGS: By phylogenetic analyses, we investigated the origin, conservation, and evolution of the four MEF2 genes. First, among the four MEF2 paralogous branches, MEF2B is clearly distant from the other three branches in vertebrates, mainly because it lacks the HJURP_C (Holliday junction recognition protein C-terminal) region. Second, three duplication events might have occurred to produce the four MEF2 paralogous genes and the latest duplication event occurred near the origin of vertebrates producing MEF2A and MEF2C. Third, the ratio (K(a)/K(s)) of non-synonymous to synonymous nucleotide substitution rates showed that MEF2B evolves faster than the other three MEF2 proteins despite purifying selection on all of the four MEF2 branches. Moreover, a pair model of M0 versus M3 showed that variable selection exists among MEF2 proteins, and branch-site analysis presented that sites 53 and 64 along the MEF2B branch are under positive selection. Finally, and interestingly, substitution rates showed that type II MADS genes (i.e., MEF2-like genes) evolve as slowly as type I MADS genes (i.e., SRF-like genes) in animals, which is inconsistent with the fact that type II MADS genes evolve much slower than type I MADS genes in plants. CONCLUSION: Our findings shed light on the relationship of MEF2A, B, C, and D with functional conservation and evolution in vertebrates. This study provides a rationale for future experimental design to investigate distinct but overlapping regulatory roles of the four MEF2 genes in various tissues
    • …
    corecore