4 research outputs found

    KiDS-1000: Constraints on the intrinsic alignment of luminous red galaxies

    Get PDF
    We constrain the luminosity and redshift dependence of the intrinsic alignment (IA) of a nearly volume-limited sample of luminous red galaxies selected from the fourth public data release of the Kilo-Degree Survey (KiDS-1000). To measure the shapes of the galaxies, we used two complementary algorithms, finding consistent IA measurements for the overlapping galaxy sample. The global significance of IA detection across our two independent luminous red galaxy samples, with our favoured method of shape estimation, is ∌10.7σ. We find no significant dependence with redshift of the IA signal in the range 0.2 < z < 0.8, nor a dependence with luminosity below Lr â‰Č 2.9 × 1010 h−2Lr, ⊙. Above this luminosity, however, we find that the IA signal increases as a power law, although our results are also compatible with linear growth within the current uncertainties. This behaviour motivates the use of a broken power law model when accounting for the luminosity dependence of IA contamination in cosmic shear studies

    KiDS-1000 Methodology:Modelling and inference for joint weak gravitational lensing and spectroscopic galaxy clustering analysis

    Get PDF
    We present the methodology for a joint cosmological analysis of weak gravitational lensing from the fourth data release of the ESO Kilo-Degree Survey (KiDS-1000) and galaxy clustering from the partially overlapping BOSS and 2dFLenS surveys. Cross-correlations between galaxy positions and ellipticities have been incorporated into the analysis, necessitating a hybrid model of non-linear scales that blends perturbative and non-perturbative approaches, and an assessment of contributions by astrophysical effects. All weak lensing signals are measured consistently via Fourier-space statistics that are insensitive to the survey mask and display low levels of mode mixing. The calibration of photometric redshift distributions and multiplicative gravitational shear bias has been updated, and a more complete tally of residual calibration uncertainties is propagated into the likelihood. A dedicated suite of more than 20000 mocks is used to assess the performance of covariance models and to quantify the impact of survey geometry and spatial variations of survey depth on signals and their errors. The sampling distributions for the likelihood and the χ2\chi^2 goodness-of-fit statistic have been validated, with proposed changes to the number of degrees of freedom. Standard weak lensing point estimates on S8=σ8 (Ωm/0.3)1/2S_8=\sigma_8\,(\Omega_{\rm m}/0.3)^{1/2} derived from its marginal posterior are easily misinterpreted to be biased low, and an alternative estimator and associated credible interval have been proposed. Known systematic effects pertaining to weak lensing modelling and inference are shown to bias S8S_8 by no more than 0.1 standard deviations, with the caveat that no conclusive validation data exist for models of intrinsic galaxy alignments. Compared to the previous KiDS analyses, S8S_8 constraints are expected to improve by 20% for weak lensing alone and by 29% for the joint analysis. [abridged]Comment: 45 pages, 34 figures, 7 tables; minor changes to match version accepted by A&A. The KiDS-1000 data products are available for download at http://kids.strw.leidenuniv.nl/DR4/lensing.php. This data release includes open source software, the shear-photo-z catalogue, the cosmic shear and 3x2pt data vectors and covariances, and posteriors in the form of Multinest chain

    Euclid. I. Overview of the Euclid mission

    No full text
    International audienceThe current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015-2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14,000 deg^2 of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structure formation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range of science. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processing steps, and data products. We also highlight the main science objectives and expected performance
    corecore