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ABSTRACT

We constrain the luminosity and redshift dependence of the intrinsic alignment (IA) of a nearly volume-limited sample
of luminous red galaxies selected from the fourth public data release of the Kilo-Degree Survey (KiDS-1000). To
measure the shapes of the galaxies, we used two complementary algorithms, finding consistent IA measurements for
the overlapping galaxy sample. The global significance of IA detection across our two independent luminous red galaxy
samples, with our favoured method of shape estimation, is ∼ 10.7σ. We find no significant dependence with redshift
of the IA signal in the range 0.2 < z < 0.8, nor a dependence with luminosity below Lr . 2.9 × 1010h−2Lr,�. Above this
luminosity, however, we find that the IA signal increases as a power law, although our results are also compatible with
linear growth within the current uncertainties. This behaviour motivates the use of a broken power law model when
accounting for the luminosity dependence of IA contamination in cosmic shear studies.

Key words. gravitational lensing: weak – cosmology: observations, large-scale structure of Universe

1. Introduction

Galaxies that form close to a matter over-density are af-
fected by the tide induced by the quadrupole of the sur-
rounding gravitational field, and the distribution of stars
will adjust accordingly. This process, which starts during
the initial stages of galaxy formation (Catelan et al. 2001),
can persist over their entire lifetime, as galaxies have contin-
uous gravitational interactions with the surrounding matter
(e.g. Bhowmick et al. 2020), and leads to the intrinsic align-
ment (IA) of galaxies.

This tendency of neighbouring galaxy pairs to have a
similar orientation of their intrinsic shapes is an important
contaminant for weak gravitational lensing measurements
(e.g. Joachimi et al. 2015). The matter distribution along
the line-of-sight distorts the images of background galaxies,
resulting in apparent correlations in their shapes. Intrinsic
alignment contributes to the observed correlations, compli-
cating the interpretation. To infer unbiased cosmological
parameter estimates it is therefore crucial to account for
the IA contribution. This is particularly important in the
light of future surveys, such as Euclid1 (Laureijs et al. 2011)
and the Large Synoptic Survey Telescope (LSST)2 at the

? E-mail: fortuna@strw.leidenuniv.nl
1 https://www.euclid-ec.org
2 https://www.lsst.org

Vera C. Rubin Observatory (Abell et al. 2009), which aim
to constrain the cosmological parameters with sub-percent
accuracy (for a forecast of the IA impact on current and
upcoming surveys see Kirk et al. 2010; Krause et al. 2016,
among others). Some recent results on current weak lensing
studies are available in, for example, Aihara et al. (2018);
Asgari et al. (2021); DES Collaboration et al. (2021).

To provide informative priors to lensing studies, it is es-
sential to learn as much as possible from direct observations
of IA. It is, however, also important that such results can
be related to the properties of galaxies that give rise to the
alignment signal in cosmic shear surveys (Fortuna et al.
2021). Intrinsic alignment studies are typically limited to
relatively bright galaxies, which often sit at the centre of
their own group or cluster, and it is thus possible to con-
nect their alignment to the underlying dark matter halo
alignment via analytic models (Hirata & Seljak 2004). The
picture becomes more complicated when considering sam-
ples that contain a significant fraction of satellite galaxies:
The alignment of satellites arises as a result of the continu-
ous torque exercised by the intra-halo tidal fields while the
satellite orbits inside the halo (Pereira et al. 2008; Pereira
& Bryan 2010). This leads to a radial alignment, which also
depends on the galaxy distance from the centre of the halo
(Georgiou et al. 2019a). At the same time, satellites fall
into halos through the filaments of the large-scale structure,
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and this persists as an anisotropic distribution within the
halo, which has been detected both in simulations (Knebe
et al. 2004; Zentner et al. 2005) and observations (West &
Blakeslee 2000; Bailin et al. 2008; Huang et al. 2016; John-
ston et al. 2019; Georgiou et al. 2019a). The combination
of these two effects complicates the picture. At small scales,
where the satellite contribution is expected to be important,
their signal may be described using a halo model formal-
ism (Schneider & Bridle 2010; Fortuna et al. 2021), but
their contribution to IA on large scales remains poorly con-
strained (Johnston et al. 2019); although it is expected that
they are not aligned, they do affect the inferred amplitude
because they contribute to the overall mix of galaxies. This
prevents a straightforward interpretation of any secondary
sample dependence of the IA signal sourced by the central
galaxy population, such as the dependence on luminosity
or colour, in mixed samples where the fraction of satellites
is relevant.

Observational studies have found discordant results re-
garding the presence of a luminosity dependence of the IA
signal, with the bright end being well described by a steep
power law with index ∼ 1.2 (Hirata et al. 2007; Joachimi
et al. 2011; Singh et al. 2015), while less luminous galax-
ies do not show any significant dependence of the IA signal
with luminosity (Johnston et al. 2019). A recent investi-
gation using hydrodynamic simulations by Samuroff et al.
(2020) supports a flatter slope, in agreement with Johnston
et al. (2019) and Fortuna et al. (2021) at low luminosities
but in tension with previous studies that probe more lu-
minous galaxies. The interpretation of these results is also
affected by the presence of satellites, whose fraction varies
with luminosity and depends on the specific selection func-
tion of the data. At low redshift, a cosmic shear survey
is dominated by faint galaxies, and improving our under-
standing of the IA signal at low luminosities is one of the
most urgent questions for IA studies.

Another relevant aspect that is often neglected is the de-
pendence of IA on the shape measurement method (Singh
& Mandelbaum 2016). The tendency to align in the direc-
tion of the surrounding tidal field is a function of galaxy
scale (Georgiou et al. 2019a), with the outermost parts –
which are more weakly gravitationally locked to the galaxy
– showing a more severe twist. It increases the IA signal as-
sociated with shapes measured via algorithms that assign
more importance to the galaxy outskirts. In contrast, lens-
ing studies typically prefer shape methods that give more
weight to the inner part of a galaxy. Accounting for this
discrepancy is potentially relevant for future cosmic shear
studies.

In this work we focus on investigating the luminosity de-
pendence of the IA signal in the least constrained regime,
Mr & −22. We employ two different samples, which differ in
mean luminosity and number density. We limit the analysis
to the large-scale alignment, for which a theoretical frame-
work is already available and where the luminosity depen-
dence is known to play a crucial role (Fortuna et al. 2021).
We also provide estimates of the satellite fractions present
in our samples in order to guide future work on the mod-
elling of satellite alignment at large scales. We also explore
the dependence of our signal on the shape measurement al-
gorithm used to create the shape catalogue. We compare
the signal as measured by two complementary algorithms:
DEIMOS (DEconvolution In MOment Space; Melchior
et al. 2011), which has been widely used in IA studies

(Georgiou et al. 2019b; Johnston et al. 2019; Georgiou et al.
2019a), and lensfit (Miller et al. 2007, 2013) which has been
used for the cosmological analysis of the Canada-France-
Hawaii Telescope Lensing Survey (CFHTLenS; Heymans
et al. 2013) and the Kilo-Degree Survey (KiDS; see Asgari
et al. 2021, and references therein).

One of the main limitations for measuring IA is the ne-
cessity of simultaneously relying on high-quality images and
precise redshifts to properly identify physically close pairs of
galaxies that share the same gravitational tidal shear. Wide
field image surveys provide high-quality images, but the un-
certainty in the photometric redshifts is too large for useful
IA measurements. Fortunately, using a specific selection in
colours, it is possible to obtain a sub-sample of galaxies with
more precise photometric redshifts: the luminous red galax-
ies (LRGs). At any given redshift, LRGs populate a well-
defined region in the colour-magnitude diagram, known as
the red-sequence ridgeline. Using this unique property, it
is possible to design a specific algorithm to select LRGs in
photometric surveys, which results in both precise and ac-
curate redshifts (Rozo et al. 2016; Vakili et al. 2019, 2020).
Luminous red galaxies have also been shown to be strongly
affected by the surrounding tidal fields, making them an ex-
tremely suitable sample for exploring the behaviour of IA
at different redshifts and as a function of secondary galaxy
properties, such as luminosity and type (central or satel-
lites).

Joachimi et al. (2011) first studied the IA signal of an
LRG sample with photometric redshifts. In this paper we
follow their main approach but use a catalogue of LRGs
selected by Vakili et al. (2020) using the KiDS fourth public
data release (KiDS-1000 Kuijken et al. 2019).

The paper is structured as follows. In Sect. 2 we describe
our data and the characteristics of our two main samples. In
Sect. 3 we introduce the two shape measurement methods
employed in the analysis and present the strategy adopted
to calibrate the bias in the measured shapes. Section 4
presents the estimators we use to extract the signal from
the data, while Sect. 5 illustrates the theoretical framework
we rely on when modelling the signal: the way the model
accounts for the use of photometric redshifts as well as the
way we account for astrophysical contaminants. Finally, we
present our main results in Sect. 6 and conclude in Sect. 7.

Throughout the paper, we assume a flat Λ cold dark
matter cosmology with h = 0.7,Ωm = 0.25,Ωb = 0.044, σ8 =
0.8, and ns = 0.96.

2. KiDS

The Kilo-Degree Survey is a multi-band imaging survey
designed for weak lensing studies, currently at its fourth
data release (KiDS-1000; Kuijken et al. 2019). The data
are obtained with the OmegaCAM instrument (Kuijken
2011) on the VLT Survey Telescope (VST; Capaccioli et al.
2012). This combination of telescope and camera was de-
signed specifically to produce high-quality images in the
ugri filters, with best seeing-conditions in the r−band, and
a mean magnitude limit of ∼ 25 (5σ in a 2′′ aperture).
These measurements are combined with results from the
VISTA Kilo-degree INfrared Galaxy survey (VIKING; Edge
et al. 2013), which surveyed the same area in five infrared
bands (ZY JHKs). This resulted in high-quality photometry
in nine bands across approximately 1000 deg2 imaged by
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Fig. 1: Photometric redshift distributions for our density
(all) and shape catalogues (lensfit and DEIMOS; see text
for details). The orange histograms show the distribution
for the dense samples, which is limited to zphot < 0.6,
whereas the luminous sample (green) is restricted to zphot <
0.8.

the fourth data release3. The VIKING data are important
for the LRG selection at high redshift (Vakili et al. 2020):
the Z band is included in the red-sequence template and im-
proves the constraints on the redshift of the high-redshift
galaxies, while the Ks band allows for a clean separation be-
tween galaxies and stars in the (r−Ks)− (r−z) colour-colour
space.

2.1. The LRG sample

Red-sequence galaxies are characterised by a tight colour-
redshift relation, so that at any given redshift they follow a
narrow ridgeline in the colour-magnitude space. This rela-
tion can be exploited to select red galaxies from photometric
data and obtain precise photometric redshifts. Here we use
the catalogue of LRGs presented in Vakili et al. (2020). It
uses a variation of the redMagiC algorithm (Rykoff et al.
2014) to select LRGs from the KiDS-1000 data. As detailed
in Vakili et al. (2019) and Vakili et al. (2020), the red-
sequence template is calibrated using the regions of KiDS
that overlap with a number of spectroscopic surveys: SDSS
DR13 (Albareti et al. 2017), 2dFLenS (Blake et al. 2016),
GAMA (Driver et al. 2011), together with the GAMA G10
region, which overlaps with COSMOS (Davies et al. 2015).

The algorithm is designed to return a sample of LRGs
with a constant comoving number density. It achieves this
by imposing a redshift-dependent magnitude cut that de-

pends on mpivot
r (z), the characteristic r-band magnitude of

the Schechter (1976) function, assuming a faint-end slope
α = 1 (for more details, see Vakili et al. 2019, sect. 3.1).
We use this to define two samples that differ from each
other in terms of their minimum luminosity relative to the
luminosity Lpivot(z). We refer to them as our luminous sam-
ple (high luminosity, low number density, Lmin/Lpivot(z) = 1)
and dense sample (lower luminosity, higher number den-

3 The survey was recently completed, imaging a final total of
1350 deg2.

sity, Lmin/Lpivot(z) = 0.5). To ensure that the two samples
are separate, we remove the galaxies in the dense sample
that also belong to the luminous one. However, this does
not mean they do not overlap in their physical properties.
In particular, they overlap partially in luminosity, a feature
that we will exploit later in the paper.

As shown in Fig. 1, the two samples also span different
redshift ranges. The luminous sample extends from z = 0.2
to z = 0.8. After applying a conservative mask to select only
objects with a high probability to be red-sequence galax-
ies (corresponding to objects with a clear separation from
the star sequence in the colour-colour diagram), we are left
with 117 001 galaxies, which comprise our density sample.
By density sample—not to be confused with the dense sam-
ple described above—we refer to the sample used to trace
galaxy positions, as opposed to the shape sample, which is
the sample used for the measurement of galaxy orientations
and is composed by the galaxies of the corresponding den-
sity sample for which a given shape measurement algorithm
is able to measure the galaxy shape. The density and shape
samples used in this analysis are visible in Fig. 1, where the
density samples of the luminous and dense samples are re-
ferred to as ‘all’ galaxies. The dense sample is obtained with
the same strategy, but we further impose z < 0.6 to ensure
the completeness and purity of the sample (see Fig. 4 in
Vakili et al. (2020)). This leads to a final sample of 173 445
galaxies. As shown in Vakili et al. (2020), the redshift errors
are well described by a Student’s t−distribution. The width
of the distribution increases slightly with redshift, with typ-
ical values around σz ∼ 0.014− 0.019. For further details on
the sample selection and redshift estimation, we refer the
interested reader to Vakili et al. (2020).

We infer galaxy absolute magnitudes using Lephare4

(Arnouts & Ilbert 2011), assuming the dust extinction law
from (Calzetti et al. 1994) and the stellar population syn-
thesis model from Bruzual & Charlot (2003). We correct
our magnitudes to z = 0; the K-correction is provided by
Lephare and the correction for the evolution of the stel-
lar populations (e−correction) is computed with the python
package EzGal5 (Mancone & Gonzalez 2012), assuming
Salpeter initial mass function (Chabrier 2003) and a single
star formation burst at z = 3. These corrections are based
on the magnitudes used to define the colours (MAG_GAAP),
which are measured using Gaussian apertures (Kuijken
et al. 2019). Although ideal for colour estimates, these un-
derestimate the flux and should not be used to compute
the luminosity. For that purpose we correct6 them using
the Kron-like MAG_AUTO measured from the r-band images
by SExtractor (Bertin & Arnouts 1996).

The left panel of Fig. 2 shows the distribution in appar-
ent magnitude MAG AUTO for galaxies in the dense and lu-
minous samples for which shapes were determined by lensfit
or DEIMOS. In Sect. 3 we describe the two shape measure-
ment methods and explain the difference in their number
counts. We note that the LRGs are much brighter than the
limiting magnitude of KiDS in the r-band. The correspond-
ing distributions in absolute magnitude in the rest-frame r
filter, K+e corrected to z = 0, are presented in the right

4 https://www.cfht.hawaii.edu/~arnouts/LEPHARE/
lephare.html
5 http://www.baryons.org/ezgal
6 The total flux in the x filter can be computed using mx =
MAG_AUTOr + (MAG_GAAPx − MAG_GAAPr), which implicitly assumes
that colour gradients are negligible.
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Fig. 2: The magnitude distributions of the samples used in the analysis. Left panel: Histograms of the apparent magnitude,
MAG_AUTO in the r-band for the galaxies in the dense (orange lines) and luminous (green lines) samples with shapes
measured by lensfit (darker colours) and DEIMOS (lighter colours). Right panel: Histograms of the absolute magnitudes
in the r-band (K + e corrected) for the same samples.

panel of Fig. 2. This shows that the dense sample overlaps
somewhat with the luminous sample in terms of luminosity,
as a consequence of the photometric redshift uncertainty7.

2.2. Satellite galaxy fraction estimation

Observations suggest that satellite galaxies are only weakly
aligned (see e.g. Georgiou et al. 2019a, for recent con-
straints) and thus suppress the IA signal at large scales.
We do not take this into account in our analysis but pro-
vide here an estimate of the fraction of satellites we expect
in our samples. Such information will be useful for future
modelling studies.

We use the publicly available G3GGal and G3GFoFGroup
catalogues (Robotham et al. 2011) from the GAMA sur-
vey (Driver et al. 2009, 2011; Liske et al. 2015). Since KiDS
overlaps with GAMA, these catalogues provide group infor-
mation for a subset of our galaxies, obtained with a Friends-
of-Friends algorithm. We cross-match our LRG samples
with the G3GGal catalogue and select galaxies with z < 0.21
(z < 0.32), which provide a roughly volume-complete match
to the dense (luminous) sample. With the information in
both group catalogues, we identify both the brightest group
galaxies and ungrouped galaxies as centrals, and the rest
as satellites. With this strategy, we obtain fsat = 0.34 for
our dense×GAMA sample and fsat = 0.23 for the lumi-

7 The selection through the redshift-dependent apparent mag-
nitude cut results in an overlap in apparent magnitudes of
the dense and luminous samples. Because the cut is redshift-
dependent, this implies a threshold in luminosity: In the case of
perfect redshifts, this would result in a disjoint sample, because
we removed the galaxies from the dense sample that overlap
with the luminous one. The photometric redshift uncertainty,
however, assigns to galaxies with the same apparent magnitude
different luminosities, and thus a portion of the dense sample
extends above the luminosity threshold of the luminous sample.

nous×GAMA8. Since our samples are selected to resemble
the same galaxy populations at different redshifts, these es-
timates should be fairly representative beyond the redshift
range probed by our direct comparison.

3. Shape measurements

In addition to precise redshifts, a successful IA measure-
ment requires accurate shape measurements. In this work,
we compare two different algorithms, DEIMOS and lensfit
both in terms of their ability to recover reliable elliptic-
ity measurements and the resulting IA signal. Exploring
the dependence of the IA signal on the shape measurement
algorithm is important if one aims to provide informative
priors to lensing studies (Singh & Mandelbaum 2016). Both
algorithms have been used to analyse KiDS data: DEIMOS
to provide the shape catalogue (Georgiou et al. 2019b) for
a number of IA studies, while lensfit was used for cosmic
shear analyses (see Giblin et al. 2021, for the most recent
shape measurements).

3.1. DEIMOS

DEIMOS (Melchior et al. 2011) is a moment-based shape
measurement algorithm designed to measure the moments
of the surface brightness distribution from an image, which
are subsequently used to estimate the ellipticity. The main
features of DEIMOS are its rigorous treatment of the PSF
moments to arbitrary order, the lack of model assumptions
and the flexibility in changing the size of the weight function
so that it is possible to assign more importance to different
parts of a galaxy while performing the shape measurement
(bulge or outskirts).

8 These estimates refer to the full samples, but should be rep-
resentative for the shape samples as well.
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The unweighted moments of the surface brightness G(x)
are defined as

Qi j ≡ {G}i j =

∫
G(x) xiy j dx dy , (3.1)

where (x, y) are the Cartesian coordinates with origin at the
galaxy’s centroid. The complex ellipticity is then defined in
terms of the second-order moments as

ε ≡ ε1 + iε2 =
Q20 − Q02 + 2i Q11

Q20 + Q02 + 2
√

Q20 Q02 − Q2
11

. (3.2)

In practice, unweighted moments cannot be used be-
cause of noise in the images, and weighted moments have
to be employed instead. We will return to this issue later.
Moreover, the galaxy images are smeared and distorted by
the atmospheric blurring and the telescope optics, so that
the observed image, G∗, is convolved with the PSF kernel
P(x),

G∗(x) =

∫
G(x′) P(x − x′) dx′ . (3.3)

The DEIMOS algorithm estimates the unweighted mo-
ments by correcting the observed weighted moments of the
galaxy surface brightness for the convolution by the PSF.
The underlying mathematical framework is a deconvolution
in moment space. In order to measure the moments in Eq.
(3.1) we then need to deconvolve them. This can easily be
achieved in Fourier space, where the convolution becomes a
product. Using the Cauchy product, we can write (Melchior
et al. 2011):

{G∗}i j =

i∑
k

j∑
l

(
i
k

) (
j
l

)
{G}kl{P}i−k, j−l , (3.4)

which shows that the (i + j)-order convolved moments are
determined by the same- or lower-order moments of the
galaxy and the PSF kernel. The deconvolution procedure
to estimate the galaxy moments is to invert the above hier-
archical system of equations, starting from the zeroth order.

As mentioned above, it is necessary to introduce a
weight function to avoid noise dominating the second-order
moments outside the galaxy light profile. In this work,
we adopt an elliptical Gaussian weight function with size
rwf = riso, where riso is the isophotal radius, defined as riso =√

Aiso/π, following Georgiou et al. (2019b). The area Aiso of
the galaxy’s isophote is computed using the ISOAREA_IMAGE
by SExtractor (Bertin & Arnouts 1996). The shape mea-
surement procedure is the same as described in Georgiou
et al. (2019b) and we point the interested reader to their
Section 2 for a detailed description of the algorithm. In Ap-
pendix A we report our analysis of the measured shape bias
for different setups, which led to our final choice reported
above.

Using DEIMOS, we successfully measure the shapes of
96 863 galaxies from the luminous sample, ∼ 83% of the
corresponding density sample, and 152 832 shapes from the
dense sample, roughly ∼ 88% of its density sample. The
shape measurements mainly fail9 for the faintest galaxies
in the sample.

9 We only considered shapes with flag_DEIMOS==0000, corre-
sponding to measurements that do not raise any flag (see Geor-
giou et al. 2019b).

3.2. lensfit

The second shape catalogue is obtained using the self-
calibrating version of lensfit (Miller et al. 2013), described
in more detail in Fenech Conti et al. (2017). It is a
likelihood-based model-fitting method that fits a PSF-
convolved two-component bulge and disk galaxy model.
This is applied simultaneously to the multiple exposures
in the KiDS-1000 r-band imaging, to get an ellipticity esti-
mate for each galaxy.

lensfit provides shapes for 84 785 galaxies from the lu-
minous sample (72% of the density sample), and for 121 500
galaxies from the dense sample (70% of the density sam-
ple). The lower completeness with respect to DEIMOS is
largely explained by the fact that lensfit has been optimised
for cosmic shear studies, where the signal is maximised for
high-redshift galaxies, which are typically small and faint.
Whilst lensfit could determine ellipticity measurements for
the large bright galaxies with MAG_AUTO < 20, this model-
fitting algorithm becomes prohibitively slow given the large
number of pixels that these bright galaxies span. There-
fore, the lensfit catalogue only contains galaxies fainter than
MAG_AUTO > 20 (hence the sharp cut-off in apparent mag-
nitude in Fig. 2). It performs better than DEIMOS for
relatively faint and low S/N galaxies. As these are pref-
erentially found at higher redshifts, this also explains the
different redshift distributions, as illustrated in Fig. 1.

3.3. Image simulations

We want to measure the shapes of galaxies from images that
are corrupted by noise and blurred by the atmosphere and
telescope optics. These bias the inferred shapes and thus
need to be carefully corrected for. Although both DEIMOS
and lensfit are designed to do so, residual biases remain.
These can be expressed as (Heymans et al. 2006)

εobs
i = (1 + mi)ε true

i + ci , (3.5)

with i ∈ {1, 2} the ellipticity components introduced in 3.2.
Here ε true

i is the true ellipticity, while εobs
i is the output of

the shape measurement algorithm; mi is the multiplicative
bias and ci is the additive bias. Differently from what is
done in lensing studies (e.g. Kannawadi et al. 2019), here
we calibrate the ellipticity rather than the shear. Our aim
is to determine the biases in our shape measurements using
realistic image simulations, with a precision that is better
than the statistical error on our IA signal.

We stress that although it is important to start with
an algorithm that does not lead to a large bias in the
first place, what matters the most is to calibrate the resid-
ual bias on realistic image simulations in order to prop-
erly account for galaxy blending and the different observ-
ing conditions (Hoekstra et al. 2017; Kannawadi et al.
2019; Samuroff et al. 2018; MacCrann et al. 2020). We use
dedicated image simulations generated with the COllege
pipeline (COSMOS-like lensing emulation of ground exper-
iments; Kannawadi et al. 2019). These simulations repro-
duce the observations from the Cosmic Evolution Survey
(COSMOS, Scoville et al. 2007), for which we have both
KiDS imaging (KiDS-COSMOS) and deeper images from
the Hubble Space Telescope (HST). We use the HST obser-
vations to generate our input catalogue and simulate the
KiDS observations by varying the observation conditions.
Under the assumption that COSMOS is representative of
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Fig. 3: Average multiplicative bias, m = (mε1 + mε2 )/2, as a function of (a) the galaxy resolution, R, and (b) the signal-
to-noise ratio, S/N. Each point is measured on the same number of simulated galaxies and the error bars are estimated
using bootstraps. For a comparison we also display in the background the weighted distribution of the two definitions
of R and the S/N in the real data for the dense shape samples (pink: lensfit; blue: DEIMOS). The solid lines show the
polynomial fit to m(R) and m(S/N), which guided the construction of the two-dimensional bias surface.

our galaxy sample (in practice we only require that it covers
the signal-to-noise (S/N) and size parameter space, while
we do not need the galaxy distributions to match) we study
the m−bias properties of the LRGs in our KiDS-COSMOS
field and use the bias model obtained from this set of galax-
ies to calibrate our full sample.

The image simulations used in this work differ slightly
from those presented in Kannawadi et al. (2019) because we
require a larger number of simulated LRGs for our calibra-
tion. To achieve this, we adopt the ZEST catalogue (Zurich
Estimator of Structural Type; Scarlata et al. 2007; Sargent
et al. 2007) for the input galaxy parameters. We gener-
ated 52 KiDS-like images by varying the observing condi-
tions and rotating the galaxies. We used 13 different PSF
sets and four rotations per each image. Since our under-
lying galaxy selection is identical for both the lensfit and
DEIMOS shape catalogues, we employed the same suite of
simulations for both calibrations.

The shape measurement bias depends on the size, S/N,
radial surface brightness profile and ellipticity of the galaxy,
as well as the observing conditions. Of these, the size and
S/N are the most relevant, and we use these to capture the
dependence of the bias for our set of simulated galaxies.
Rather than the intrinsic size of the galaxy, we use a proxy
for how well it is resolved: R quantifies the relative size of
the PSF compared to the size of the galaxy. Here, we adopt
two slightly different definitions, depending on the shape
algorithm employed. For DEIMOS we use

RDEIMOS = 1 −
T PSF

T gal , (3.6)

where T PSF = QPSF
20 +QPSF

02 and T gal = Q∗gal
20 +Q∗gal

02 , where Q∗gal
i j

are the unweighted moments of the PSF-convolved surface
brightness profile (see Eqs. 3.4 and 3.1). In the case of lensfit
we use

Rlensfit = 1 −
r2

PSF(
r2

ab + r2
PSF

) , (3.7)

where r2
PSF =

√
P11P22 − P2

12 and rab = re
√

q. Here, Pi j are

the lensfit PSF weighted quadrupole moments (see Eq. (2)
in Giblin et al. 2021), measured with a circular Gaussian
function of size 2.5 pixels; re is the half-light radius mea-
sured along the major axis of the best-fit elliptical profile
by lensfit, which is an estimate of the true galaxy size be-
fore PSF-convolution, while q is the axis ratio, such that rab
is the azimuthally averaged size of the galaxy. As we can
see, R can in practice only assume values between 0 and 1,
where 1 corresponds to galaxies with sizes that are much
larger than the PSF.

We evaluate the multiplicative bias m in bins of S/N
and R that contain an equal number of galaxies and the
error bars are computed using 500 bootstrap realisations.
The resulting biases are presented in Fig. 3 for both lensfit
and DEIMOS. We find that the two components ε1,2 show
similar dependencies, and we, therefore, calibrate the bias
for the two components jointly. The additive bias for both
components is consistent with zero, and thus we do not
consider it further in our calibration.

For both m(S/N) and m(R), we find that lensfit has a
small bias and thus also our correction is small; in general, it
performs better than DEIMOS for poorly resolved galaxies
and low S/N. It is, however, prohibitively slow when mea-
suring shapes for large galaxies, limiting the lensfit sample
to galaxies with mr > 20. In contrast, DEIMOS shows a
large bias for low values of R: the galaxy size correlates
with its ellipticity, and we find that removing the highly
elliptical galaxies significantly reduces the bias. However,
once we calibrate the shapes of those galaxies, we recover
a very similar signal for the full shape sample and the one
cut in ellipticity. Similarly, we have also tested that adding
inverse-variance weights to account for these noisy galaxies
does not significantly improve our signal. This motivates
our choice to keep all galaxies in our sample and not to
introduce additional weighting; we assume that the mea-
surements are dominated by shape noise only.
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Fig. 4: Histogram of the difference of the ε1 component of
the ellipticity measured by the two shape measurement al-
gorithms, lensfit and DEIMOS, on a common sub-sample
of galaxies, after applying the m−bias correction as de-
scribed in the text. The ε2 component shows the same
behaviour. The distribution is more peaked than a Gaus-
sian (red dashed line) and is best described by a Student’s
t−distribution with ν = 4.3, and a width σ = 0.08 with zero
mean (black solid line).

We can see that m(R) for both DEIMOS and lensfit is
well described by a polynomial curve, which we truncate at
degree 3 and 4, respectively, while m(S/N) is well described
by the expansion: d(S/N) = d1/

√
S/N + d2/(S/N). We com-

bine the two individual bias dependencies into a single bias
surface as detailed in Appendix A. The specific functional
forms for the two shape methods differ to better adapt the
surface to our observed bias. We use these empirical rela-
tions to infer the m-bias associated with each galaxy, given
its S/N and R.

To ensure that our empirical correction performs well
on our sample, we select sets of galaxies from the image
simulations that resemble our LRG samples by reproduc-
ing the observed distributions in S/N and R. We measure
the residual biases for these samples, defined as the differ-
ence in the estimated m-bias (inferred using our model for
the bias) and the bias measured directly from the simula-
tions for the given set of galaxies. For the DEIMOS shape
method, we find an average residual of −0.002 ± 0.007 for
the dense-like sample, while this is −0.002 ± 0.008 for the
luminous-like sample. Similarly, in the case of lensfit the
residuals for the luminous-like and dense-like galaxies are,
respectively, −0.0014 ± 0.0013 and −0.0019 ± 0.0020. As we
will see later, this is much smaller than the uncertainty in
the IA measurements: the average bias introduced by the
shape measurement process is subdominant and does not
affect our best estimate of the IA amplitude.

The LRGs are relatively bright and we thus expect the
shape measurements to be shape noise-dominated. This also
implies that the DEIMOS and lensfit measurements are
correlated. To quantify this, we show the distribution of
the difference between the m−corrected ellipticities mea-
sured by the two algorithms in Fig. 4. The distribution is
more peaked than a Gaussian, and well described by a Stu-

dent’s t−distribution centred on zero, with ν = 4.30 (degrees
of freedom) and with scale parameter σ = 0.08. This is to
be compared to the intrinsic ellipticity of galaxies, which
is about εrms = 0.12 based on DEIMOS measurements for
galaxies with apparent magnitude mr < 20. It is interesting
to note that our sample is considerably rounder than a typ-
ical cosmic shear sample, as expected for an LRG sample
(see for example van Uitert et al. 2012); this implies that
it might be affected differently by a weighting scheme in
a lensing analysis. The differences between the DEIMOS
and lensfit measurements are caused by differences in how
each method deals with noise in the images.

4. Correlation function measurements

We measure the IA signal using the two-points statistic wg+,
defined as the projection along the line-of-sight of the cross-
correlation between galaxy positions and galaxy shapes. It
measures the tendency of galaxies to point in the direction
of another galaxy as a function of their comoving transverse
separation, rp, and comoving line-of-sight separation, Π. To
quantify the alignment signal in our data, we employ the
estimator presented in Mandelbaum et al. (2006)10,

ξ̂g+(rp,Π) =
S +D − S +RD

RSRD
, (4.1)

where RD and RS are catalogues of random points designed
to reproduce the galaxy distribution of the density and
shape samples, respectively. We indicate with D the den-
sity sample that provides the galaxy positions, while S + is
the shape sample, such that the quantity

S +D =
∑
i, j

γ+(i| j), (4.2)

gives us the tangential shear component of the galaxy pair
(i, j), γ+(i| j), where i is extracted from the shape sample and
j from the density sample. γ+, in turn, is defined as

γ+(i| j) =
1
R
<

[
εi exp(−2iφi j)

]
, (4.3)

where < denotes the real part; εi is the complex ellipticity
associated with the galaxy i, εi = ε1,i + iε2,i, whose com-
ponents 1,2 are measured by the shape measurement algo-
rithms presented in Sect. 3; φi j is the polar angle of the
vector that connects the galaxy pair; R = ∂ε/∂γ is the shear
responsivity and it quantifies by how much the ellipticity
changes when a shear is applied: for an ensemble of sources,
R = 1 − ε2

rms.
The galaxy clustering signal is computed with the stan-

dard estimator (Landy & Szalay 1993),

ξ̂gg(rp,Π) =
DD − 2DRD − RDRD

RDRD
. (4.4)

To measure our clustering and IA signals, we use uni-
form random samples that reproduce the KiDS footprint,
accounting for the masked regions; to these we assign red-
shifts randomly extracted from the galaxy unconditional

10 Instead of normalising by RSRD, we actually normalise by the
density - randoms vs. shapes pair count, RDDS. This significantly
speeds up the computation and has been tested to have negligible
impact (Johnston et al. 2019).
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photometric redshift distributions. For each sample, we con-
struct the random sample to match their redshift distribu-
tion.

To account for the spatial variation in the survey sys-
tematics, we apply weights to the galaxies when computing
the signal, as discussed in Vakili et al. (2020). These weights
are designed to remove the systematic-induced variation in
the galaxy number density across the survey footprint. For
a detailed discussion of how the weights are generated and
tested, we refer to Sect. 4 in Vakili et al. (2020). To capture
the variation in the survey systematics along the line-of-
sight, we split each sample into three redshift bins and as-
sign the weights to those sub-samples. We tested that this
procedure does not induce a correlation between the galaxy
weights and the redshifts themselves. We have also verified
that the impact of the weights is very small and can be
neglected when considering the split in luminosity of the
samples (see Sect. 6.1). We apply such weights to both the
density and shape samples.

In this work, we measure the clustering and IA signals
using an updated version of the pipeline presented in John-
ston et al. (2019), which makes use of the publicly available
software Treecorr (Jarvis et al. 2004)11 for clustering cor-
relations. ξg+ and ξgg are then projected by integrating over
the line-of-sight component of the comoving separation, Π,

ŵgi(rp) =

∫ Πmax

−Πmax

dΠ ξ̂gi(rp,Π) i = {+, g} . (4.5)

The largest scales probed in this analysis are limited by
the effective survey area (∼ 777 deg2). We set a maximum
transverse separation of 60 h−1Mpc and measure the signal
in 10 logarithmically spaced bins, from rp,min = 0.2 h−1Mpc.

We perform the measurements for three different setups:
we adopt Πmax = 120 h−1Mpc as the fiducial case, but repeat
the analysis for Πmax = 90 h−1Mpc and Πmax = 180 h−1Mpc
(see Appendix E). We always bin our galaxies in equally
spaced bins with ∆Π = 10 h−1Mpc. We observe an extended
signal to Π > 180 h−1Mpc, but the signal is comparable to
the noise at those distances.

Our choice of Πmax is conservative since the uncertain-
ties in the photometric redshifts are σz < 0.02(1+z) for both
the denseand luminous samples (Vakili et al. 2020), and if
we choose Πmax based on the 1σ uncertainty in the photo-
metric redshifts (Joachimi et al. 2011), we could potentially
reduce Πmax to 70 h−1Mpc. However, this might be too op-
timistic given that the error on σz increases with redshift.
The choice of Πmax is motivated by two opposite necessities:
to maximise the S/N, we want to minimise the amount of
signal that we discard, whilst we also want to avoid adding
uncorrelated pairs that would increase the noise. To find
the best balance, we calculate the S/N of our signal as a
function of (rp,Π) by dividing the measured wgg(rp,Π) by
the root-diagonal of the jackknife covariance. We truncate
at Πmax based on the 10 σ detection, which roughly cor-
responds to Πmax = 120 h−1Mpc. In addition to these con-
siderations, there is a further motivation to limit the in-
tegral to modest line-of-sight separations: as discussed in
Appendix C, the contamination from galaxy-galaxy lensing
has a shallower dependence on the line-of-sight separation;
as we move along the Π direction, we see an increase in the

11 https://github.com/rmjarvis/TreeCorr

contamination with a mild increase in the IA signal, until
lensing dominates.

The error bars are computed via a delete-one jackknife
re-sampling of the observed volume. The covariance matrix
is constructed as

Covjack. =
N − 1

N

N∑
α=1

(wα − w̄)(wα − w̄)>, (4.6)

where wα is the signal measured from jackknife sample α,
while w̄ is the average over N samples; > denotes the trans-
pose of the vector.

The number of regions N is ultimately set by the size
of the survey and the scales we aim to probe. A maxi-
mum value of rp = 60 h−1Mpc corresponds to an angular
separation of ∼ 8 degrees (dense sample) and ∼ 6 degrees
(luminous sample) at the lowest redshifts probed in the
analysis. However, to increase the number of jackknife re-
gions, we decide to set the minimum angular scale to 5
degrees, which strictly satisfies our requirement only for
z & 0.2. This is motivated by the fact that the majority
of our galaxies are at high redshift and hence only . 5%
of our galaxies have unreliable error estimates in the last
rp−bin. The total number of jackknife regions that we are
able to obtain for our samples is N = 37. We correct our
inverse covariance matrices, which enter into our likelihood
estimations, as recommended in Hartlap et al. (2007): be-
cause of the presence of noise, the inverse of a covariance
matrix obtained from a finite number of jackknife (or boot-
strap) realisations is a biased estimator of the true inverse
covariance matrix.

5. Modelling

The linear alignment model (Catelan et al. 2001; Hirata &
Seljak 2004) predicts a linear relation between the contri-
bution to the shear induced by IA and the quadrupole of
the gravitational field responsible of the tidal effect. This
can be expressed as

γI = (γI
+, γ

I
×) = −

C1

4πG
(∂2

x + ∂2
y , ∂x∂y)Φp , (5.1)

where the partial derivatives are with respect to comov-
ing coordinates and provide the tangential and cross com-
ponents of the shear with respect to the x-axis; Φp is the
gravitational potential at the moment of galaxy formation,
assumed to take place during the matter-dominated era
(Catelan et al. 2001); C1 is a normalisation constant and
G is the gravitational constant.

Using Eq. (5.1), by correlating the intrinsic shear with
itself or with the matter density field δ, we can construct the
relevant equations for the IA correlation functions (Hirata
& Seljak 2004). In Fourier space, the matter density-shear
power spectrum (δI) becomes

PLA
δI (k, z) = AIAC1ρc

Ωm

D(z)
Plin
δδ (k, z) . (5.2)

Here, D(z) is the linear growth factor, normalised to unity
at z = 0, ρc is the critical density of the Universe today,
and Plin

δδ is the linear matter power spectrum. We set C1 =

5 × 10−14h−2M−1
� Mpc3 based on the IA amplitude measured

at low redshifts using SuperCOSMOS (Brown et al. 2002),
which is the standard normalisation for IA power spectra.
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Galaxies are biased tracers of the matter density field,
and at large scales this relation is linear, δg ∼ bgδ. We can
thus relate the galaxy position–intrinsic shear power spec-
trum to the matter density–intrinsic shear power spectrum
via the galaxy bias bg:

PLA
gI (k, z) = bgPLA

δI (k, z) , (5.3)

which is the power spectrum of interest for our analysis.
A successful modification of the LA model replaces the

linear matter power spectrum in Eq. 5.2 with the non-
linear one, to account for the non-linearities arising at in-
termediate scales (Bridle & King 2007). This so-called NLA
model was succesfully employed in a number of studies (e.g.
Blazek et al. 2011; Joachimi et al. 2011) and here we follow
the same approach to model our signal. More sophisticated
treatments of the IA signal, which include the modelling of
the mildly or fully non-linear scales, have been developed in
the last decade (Schneider & Bridle 2010; Blazek et al. 2019;
Fortuna et al. 2021), but given the scales probed in our anal-
ysis (see Sect. 5.3) and the homogeneous characteristics of
the galaxy population studied, the NLA model provides a
sufficient description for this work. Unless stated otherwise,
in the following we always assume the NLA model as our
reference choice. To generate the linear matter power spec-
trum we use CAMB12 (Lewis et al. 2000; Lewis & Bridle
2002), while the non-linear modifications are computed us-
ing Halofit (Smith et al. 2002) with the implementation
presented in Takahashi et al. (2012). In the rest of the pa-
per, we simply refer to the non-linear matter power spec-
trum as Pδδ(k, z).

5.1. Incorporating the photometric redshift uncertainty into
the model

The use of photometric redshifts results in an uncertainty
in the estimated distance of the galaxies, which has to be
included in the model. In particular, if we express the cor-
relation function ξgI in terms of the two components of the
galaxy separation vector r, (rp,Π), we can map the redshift
probability distribution into the probability that the true
values of rp and Π correspond to their photometric esti-
mates. Here, we follow the approach derived in Joachimi
et al. (2011) and use their approximated expression,

ξ
ph
gI (r̄p, Π̄, z̄m) =

∫
d``
2π

J2

(
`θ(r̄p, z̄m)

)
CgI

(
`; z̄1(z̄m, Π̄), z̄2(z̄m, Π̄)

)
.

(5.4)

The observables are: z̄1 and z̄2, the photometric redshift
estimates of the pair of galaxies for which we are measuring
the correlation, and their angular separation θ. These can
be related to (r̄p, Π̄, z̄m), through the approximate relations

zm =
1
2

(z1 + z2) , (5.5)

rp ≈ θχ(zm) , (5.6)

Π ≈
c

H(zm)
(z2 − z1) , (5.7)

where χ(zm) and H(zm) are, respectively, the comoving dis-
tance and the Hubble parameter at redshift zm, and c is the
speed of light.

12 https://camb.info

The conditional redshift probability distributions are in-
corporated into the angular power spectrum CgI, which can
be expressed in terms of the three-dimensional power spec-
trum PgI(k, z),

CgI(`, z̄1, z̄2) =

∫ χhor

0
dχ′

pn(χ′|χ(z̄1))pε(χ′|χ(z̄2))
χ′2

× PgI

(
` + 1/2
χ′

, z(χ′)
)

(5.8)

where we have implicitly assumed the flat-sky and Limber
approximations, and n and ε indicate the density and shape
sample respectively. p(χ′|χ) are the conditional comoving
distance probability distributions, which are related to the
redshift distributions via p(χ′|χ)dχ = p(z|z̄)dz. When com-
puting our predictions, we bin our photometric data and
compute the corresponding p(z|z̄) ≡ p(zspec|zphot) per each
bin; z1 and z2 in Eq. (5.5) corresponds to the mean val-
ues of the probability distribution with z1 being the mean
of the i-th bin and z2 of the j-th bin. In Appendix B we
show the redshift distributions entering our analysis. We
refer the interested reader to appendices A.2 and A.3 in
Joachimi et al. (2011) for the full derivation of equation
5.8. The exact same formalism can then be applied to the
clustering signal, where CgI → Cgg, J2 → J0 and the redshift
distributions are those corresponding to the density sample.

The projected correlation functions wg+ and wgg can
then be obtained as:

wg+(rp) =

∫
dΠ̄

∫
dzmW(z̄m)ξph

gI (r̄p, Π̄, z̄m) (5.9)

and

wgg(rp) =

∫
dΠ̄

∫
dzmW(z̄m)ξph

gg(r̄p, Π̄, z̄m) , (5.10)

where the redshift window function W(z) is defined as
(Mandelbaum et al. 2011):

W(z) =
pi(z)p j(z)
χ2(z)dχ/dz

[∫
dz

pi(z)p j(z)
χ2(z)dχ/dz

]−1

, (5.11)

where pi, j(z) with i, j ∈ S ,D are now the unconditional red-
shift distributions for the shape and density samples, and
χ(z) is the comoving distance to redshift z.

5.2. Contamination to the signal

All possible two-point correlations between galaxy shapes
and positions contribute to the estimator in Eq. (4.5). Fol-
lowing the notation in Joachimi & Bridle (2010), here we
consider: the correlation between the intrinsic shear and
the galaxy position (g+), which is the quantity we aim
to constrain; but also the correlation between gravitational
shear and galaxy position, sourced by the galaxy lensing of
a background galaxy by a foreground galaxy (gG); and the
apparent modification of the galaxy number counts due to
the effect of lensing magnification, which affects both the
correlations with the intrinsic shear and the gravitational
shear (mI and mG).

Among these effects, galaxy-galaxy lensing is the main
contaminant to our signal. While IA requires physically
close galaxies, galaxy-galaxy lensing occurs between galax-
ies at different redshifts. This implies that the level of con-
tamination depends on our ability to select close pairs of
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galaxies, which ultimately depends on the photometric red-
shift precision. For this reason, the width and the tails of the
redshift distributions play an important role in the amount
of contamination. Since our p(zspec|zphot) are quite narrow
(see Appendix B) we do not expect this to be a major ef-
fect in our data. Nevertheless, we fully model both lensing
and magnification effects, and account for them when in-
terpreting the signal. We note that the sign of the gI and
gG terms are opposite, such that adding the lensing to the
model allows us to remove its suppressing contribution and
capture the true IA signal.

It is convenient to write the various correlations in terms
of the projected angular power spectra: indicating with n
the density sample (that provides the galaxy positions) and
with ε the shape sample, we have

C(i j)
nε (`) = C(i j)

gI (`) + C(i j)
gG (`) + C(i j)

mI (`) + C(i j)
mG(`) , (5.12)

where, in a flat cosmology, these read

C(i j)
gG (`) = bg

∫ χhor

0
dχ

p(i)
n (χ)q( j)

ε (χ)
χ2 Pδδ

(
` + 1/2
χ

, χ

)
, (5.13)

C(i j)
mI (`) = 2(α(i) − 1)C(i j)

IG (`), (5.14)

and

C(i j)
mG(`) = 2(α(i) − 1)C(i j)

GG(`) . (5.15)

Here α(i) is the slope of the faint-end logarithmic luminosity
function13. The lensing weight function, qX, X ∈ {n, ε} is
defined as

qX(χ) =
3H2

0Ωm

2c2

χ

a(χ)

∫ χhor

0
dχ′pX(χ′)

χ′ − χ

χ′
. (5.16)

C(i j)
IG is the intrinsic-shear power spectrum. It models the

correlation between the shearing of source galaxies by a
foreground matter overdensity and the simultaneous IA of
galaxies located near that overdensity:

C(i j)
IG (`) =

∫ χhor

0
dχ

p(i)
n (χ)q( j)

ε (χ)
χ2 PδI

(
` + 1/2
χ

, χ

)
; (5.17)

C(i j)
GG is instead defined as:

C(i j)
GG(`) =

∫ χhor

0
dχ

q(i)
n (χ)q( j)

ε (χ)
χ2 Pδδ

(
` + 1/2
χ

, χ

)
. (5.18)

We note that with respect to the usual shear power spec-
trum, we require here that one of the samples refers to the
density sample, n.

To account for these sources of contamination in the
fit, we replace ξgI with ξnε , which can be obtained from
Eq. (5.12). The prediction for ξobs is then used to constrain
the measured signal ŵg+. In Appendix C we expand further
on the impact of lensing on our measurements, while in
Appendix D we describe our strategy to measure the values
of α(i) in our data.

13 Formally, the magnification of the lensfit sample is also af-
fected by the slope of the luminosity function at the bright end
of mr = 20. We ignore such complexity: we find magnification to
be a subdominant effect for the faint distant galaxies, thus the
contribution of low-redshift galaxies is expected to be negligible
for our analysis.

5.3. Likelihoods

We perform the fits to the data using a Markov Chain
Monte Carlo (MCMC) that samples the multi-dimensional
parameter posterior distributions and finds the set of pa-
rameters that maximise the likelihood. We assume a Gaus-
sian likelihood of the form L ∝ exp(−χ2/2), where

χ2 = χ2
wgg

+ χ2
wg+

(5.19)

and we simultaneously fit for the galaxy bias, bg and the
IA amplitude, AIA.

To correct for the effects of a partial-sky survey window,
we also introduce an integral constraint, IC, when modelling
the clustering, signal,

wgg → wgg + IC . (5.20)

This term, which becomes important only on large scales,
has the function of capturing the bias that arises from a
mis-estimation of the global mean density (Roche & Eales
1999). We treat this term as a nuisance parameter, such
that our parameter vector reads

λ = {bg, AIA; IC} . (5.21)

We limit our fits to the quasi-linear regime, rp >

6 h−1Mpc, to ensure that the linear bias approximation is
satisfied and the IA signal is well described by the NLA
model. To perform our fits, we make use of the Emcee
(Foreman-Mackey et al. 2013) package as implemented in
the cosmology software CosmoSIS14 (Zuntz et al. 2015).
When analysing the chains, we exclude the first 30% of
samples for a burn-in phase.

6. Results

The left panels in Fig. 5 show the measurements of the
projected position-shape correlation function wg+ for the
luminous (top panel) and dense (bottom panel) samples.
We present results for both the lensfit (dark green trian-
gles) and DEIMOS (light green squares) shape catalogues.
As described in Sect. 5.3, we simultaneously fit the IA and
the clustering signals. We show the resulting best-fit mod-
els to measurements with rp > 6 h−1Mpc of wg+ and wgg as
solid lines in the figures. The estimates from the two shape
measurement algorithms are fit independently, but given
that the corresponding clustering signal is the same, here
we only show the best-fit curve for the DEIMOS fit. The
clustering measurements use the full density samples, and
thus do not rely on a successful shape measurement.

We observe similar signals for the DEIMOS and lensfit
samples, with the lensfit measurements having a lower S/N,
because of the lack of shape measurements for galaxies with
mr < 20. We note that we do not necessarily expect to
observe the same signal, because DEIMOS contains more
bright, low-redshift galaxies, whereas the lensfit sample in-
cludes fainter, distant galaxies (see Figs. 1 and 2). If the
alignment signal depends on luminosity or redshift, the two
shape samples would give different signals. In Appendix F
we restrict the comparison to the sample of galaxies with
shape measurements from both methods, and find that the
average difference 〈rp∆wg+〉 = 0.003±0.13 is negligible, espe-
cially compared to the amplitude of the IA signal quantified

14 http://bitbucket.org/joezuntz/cosmosis/wiki/Home
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Fig. 5: Projected correlation functions (IA and clustering signal) measured in this work and the best-fit curve predicted
by our model. Left: Projected position-shape correlation function, wg+, measured for our luminous (top panel) and dense
(bottom panel) samples. We show results for shapes measured with DEIMOS (light squares) and lensfit (dark triangles).
The best-fit models to the data with rp > 6 h−1Mpc (indicated by the vertical dashed line), are shown as well, with the
same colour scheme (DEIMOS: dash-dotted lines, lensfit: dashed lines). For clarity, the lensfit results have been slightly
offset horizontally. Right: Projected clustering signal, wgg, of the dense and luminous samples. The dot-dashed lines
corresponds to the best-fit models. As we do not include a scale-dependent bias in our model, the mismatch between
data and prediction at small scales is expected.

as 〈rpwg+〉 = 0.90± 0.17 (DEIMOS shapes; see Appendix F
for details).

We also show the models that provide the best-fit to the
combined wgg and wg+ measurements in Fig. 5, and report
the values for the bias bg and IA amplitude AIA in Table 1.
The results for DEIMOS and lensfit are consistent.

Our constraints on the galaxy bias of the dense and
luminous samples are in broad agreement with the values
presented in Vakili et al. (2020): We find a larger bias for
the luminous sample than for the dense one, as expected
by its higher luminosity and the higher redshift baseline.

6.1. Luminosity dependence

Previous studies of LRGs (Joachimi et al. 2011; Singh et al.
2015) have found a significant dependence of their IA sig-
nal with luminosity, with more luminous galaxies showing
stronger alignments. On average our LRG sample probes
somewhat lower luminosities than those earlier studies, but
the overlap with these earlier works also enables a direct
comparison. Thanks to the large range in luminosity it cov-
ers, the dense sample is particularly suited to explore the
dependence with luminosity. To do so, we use the DEIMOS
shape catalogue15 and split the dense LRG galaxies in five
sub-samples: D1, D2, and D3, correspond to the lowest three
quartiles in luminosity; the remaining two, D4 and D5, are
obtained by splitting the highest luminosity quartile into
two equally sized samples. The motivation to split the quar-
tile with the highest luminosities is that it encompasses a
very large range in luminosity, which complicates the in-

15 The internal cut at mr < 20 in lensfit makes it less suitable for
this analysis, as we have fewer galaxies at high luminosities.
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Fig. 6: Projected correlation function, wg+, measured for the
different cuts in luminosity of the DEIMOS dense sample.
The best-fit curves are plotted on top of the data points,
and the fits are performed for rp > 6 h−1Mpc. All but the
yellow points have been slightly offset horizontally; to bet-
ter visualise the goodness of fit, the corresponding best-fit
curves have been displaced accordingly.

terpretation if the signal depends on luminosity (see be-
low). Relevant details for the sub-samples are listed in Ta-
ble 1. We keep the dense and luminous samples separate,
in order to better isolate the effect of the luminosity de-
pendence from any redshift evolution of the sample itself.
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Table 1: Properties of the individual galaxy samples used in our analysis and the corresponding best-fit galaxy bias (bg)
and IA amplitude (AIA) as constrained by our model.

Samples 〈z〉 ND NS [Lmin, Lmax] 〈L〉/L0 bg AIA χ2
red

DEIMOS
dense 0.44 173 445 152 832 0.38 1.59+0.04

−0.04 3.69+0.66
−0.65 0.78

luminous 0.54 117 001 96 863 0.64 2.06+0.04
−0.04 4.03+0.81

−0.79 1.19
D1 0.41 173 445 39 108 [0.09, 1.13] 0.21 1.60+0.04

−0.04 3.02+1.53
−1.48 1.00

D2 0.42 173 445 39 322 [1.13, 1.43] 0.27 1.60+0.04
−0.04 1.21+1.63

−1.64 0.91
D3 0.43 173 445 39 229 [1.43, 1.92] 0.35 1.59+0.04

−0.04 4.11+1.48
−1.48 1.05

D4 0.45 173 445 19 333 [1.92, 2.81] 0.49 1.59+0.04
−0.04 3.02+2.37

−2.33 1.52
D5 0.45 173 445 19 235 ≥ 2.81 0.89 1.59+0.04

−0.04 8.39+1.04
−1.30 0.47

L1 0.53 117 001 48 588 [0.29, 2.66] 0.46 2.06+0.04
−0.04 1.80+0.96

−0.95 1.17
L2 0.55 117 001 24 208 [2.66, 3.51] 0.65 2.06+0.04

−0.04 4.95+1.24
−1.21 1.19

L3 0.56 117 001 24 067 ≥ 3.51 1.00 2.06+0.04
−0.04 5.71+1.57

−1.60 2.03
lensfit
dense 0.49 173 445 121 500 0.33 1.60+0.04

−0.04 4.94+1.24
−1.22 1.52

luminous 0.63 117 001 84 785 0.59 2.06+0.04
−0.04 2.95+1.49

−1.42 1.54
DEIMOS + lensfit
Z1 (z ≤ 0.585) 0.44 56 754 56 754 0.63 2.01+0.06

−0.06 3.84+1.10
−1.06 0.22

Z2 (z > 0.585) 0.70 57 613 57 613 0.61 2.39+0.08
−0.08 3.97+2.02

−2.04 2.43

Notes. The galaxy properties are summarised by: the mean redshift, 〈z〉; the number of galaxies in the density (shape) sample, ND
(NS); the mean luminosity in terms of a pivot luminosity L0 = 4.6 × 1010h−2L�; the bias, bg. To compute the ratio 〈L〉/L0, we only
consider the galaxies in the corresponding shape sample. For our L−cuts sub-samples, we also provide the range in luminosity they
probe, [Lmin, Lmax], in units of 1010h−2L�. Similarly, we provide in brackets the cut adopted to split our sample in two redshift bins.
When cross-correlating different samples, ND refers to the density sample used in the correlation and the bias is the best-fit bias
of the density tracer as obtained for that given measurement. All measurements are performed assuming Πmax = 120 h−1Mpc. Since
the best-fit parameters and the medians of the marginal posterior distributions are in agreement, we quote the marginal values,
while the χ2 refers to the maximum likelihood. In all cases, the degrees of freedom are 5; the p−values are all above 0.03, with the
majority of them being in the range 0.3-0.7.

For instance, as listed in Table 1, the mean redshift of the
sub-samples increases somewhat from D1 to D5.

We cross-correlate the DEIMOS shape catalogues for
the individual sub-samples with the positions of galaxies
in the full dense sample. In this way, we can disentangle
the luminosity dependence of the IA signal from the lumi-
nosity dependence of the density tracer (brighter galaxies
are typically found in denser environments). The measure-
ments and the best-fit models are presented in Fig. 6. In
Table 1 we list the best-fit values for the galaxy bias bg

and IA amplitude AIA, as well as the reduced χ2, as before,
using the measurements for rp > 6 h−1Mpc. We also show
the measurements in Fig. 7 as orange stars as a function of
L/L0, where L0 = 4.6 × 1010h−2L�.

We repeat the same analysis for the luminous sample,
which we divide in three bins, with a similar bin refining
approach as for the dense sample (in this case L1 con-
tains half of the luminous galaxies, while L2 and L3 the
remaining quarters). The best-fit amplitudes for these sam-
ples are reported in Table 1, and presented as green stars
in Fig. 7. In the luminosity range where the luminous and
dense samples overlap, we find the results between the two
samples to be compatible. The luminous sample seems to
show a more pronounced luminosity dependence compared
to the dense sample, which can either be an effect of being
brighter overall (from L1 to L3, L/L0 = 0.46, 0.64, 1.01) or
due to the satellite fraction being lower (see Sect. 2.2), or
a combination of the two. We note that the measurements
of the L3 sample appear to scatter more than the covari-

ance predicts, which results in higher χ2. A similar issue is
present in the D4 sample and it is visible in Fig. 6.

The horizontal error bars in Fig. 7 indicate the weighted
standard deviation of the luminosity distribution within the
bin for each sample, with the measurement placed at the
luminosity-weighted mean of the bin. If the range is too
large, and the IA signal varies within the bin, the result-
ing amplitude is difficult to interpret, and may even ap-
pear discrepant. For instance, when we combine the D4
and D5 samples we obtain AIA = 6.70+1.15

−1.14. We note, how-
ever, that the luminosity range probed by this combined
bin is particularly extended, and the high signal measured
is mainly driven by the galaxies in the high luminosity
tail of the bin (D5, AIA = 8.39+1.04

−1.30). The other half of the
bin has a relatively low signal with very large uncertain-
ties (D4, AIA = 3.02+2.37

−2.33). This is relevant because it sug-
gests that the alignment of galaxies with luminosities below
L/L0 ∼ 0.60 − 0.70 hardly depends on luminosity, and thus
with a similar amplitude to D1 and D3, the smaller sample
is less constraining. As soon as we exceed this approximate
threshold, the signal increases significantly, suggesting a lu-
minosity dependence. This overall picture is enhanced when
we also consider previous results for LRGs (Joachimi et al.
2011; Singh et al. 2015; Johnston et al. 2019; Fortuna et al.
2021)16. These are also shown in Fig. 7. We investigate how

16 The GAMA points (Johnston et al. 2019) have been adjusted
to homogenise the units convention, as discussed in Fortuna et al.
(2021).
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Table 2: Best-fit parameters of the single and double power law fit on the measurements in Fig. 7.

Model Aβ β1 β2 Lbreak χ2/dof dof
Double power law 3.28+2.41

−1.17 (2.01) 0.26+0.42
−0.77 (-0.75) 1.17+0.21

−0.17 (1.11) 0.64+0.45
−0.24L0 (0.39L0) 1.36 (1.33) 22

Single power law 5.98+0.27
−0.27 (6.0) 0.93+0.11

−0.10 (0.92) - L0 1.61 (1.61) 24

Notes. The listed values correspond to the medians of the marginal posterior distributions, and the associated errors correspond
to the 16th and 84th percentiles, while in brackets we report the parameters that maximise the likelihood. The same scheme is
adopted for the corresponding reduced χ2. Lbreak is the pivot luminosity that enters in the denominator of the power law argument.
For convenience, the slope of the single power law model is here reported as β1.
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GAMA red cen-cen

KiDS-1000 LRG dense

KiDS-1000 LRG lum

Double power law

Single power law

Fig. 7: Luminosity dependence of the IA amplitude as mea-
sured by different observational studies (Joachimi et al.
2011; Singh et al. 2015; Johnston et al. 2019; Fortuna et al.
2021); our new measurements on the LRG samples are
shown as star markers. We provide horizontal error bars to
indicate that the measurement is performed on a bin in lu-
minosity, here plotted as the weighted standard deviation of
the luminosity distribution of each sample, with the marker
placed at the weighted mean. The solid (dashed) black line
shows the median of the distribution of the MCMC sample
associated with the double (single) power law; the shaded
area corresponds to the 68% confidence region.

well the current measurements support the picture of a sin-
gle or double power law by fitting the data points in Fig. 7,
assuming them to be uncorrelated. For each data point, we
only use the quoted L/L0 as we do not have the underlying
luminosity distribution for most of the measurements. We
propose a double power law with knee at Lbreak, amplitude
Aβ and slopes β1,2:

A(L) = Aβ

(
L

Lbreak

)β
with

{
β = β1 for L < Lbreak

β = β2 for L > Lbreak
(6.1)

and fit for

λ =
{
Aβ, β1, β2, Lscale

}
, (6.2)

where Lscale = Lbreak/L0. We explored the parameter space
using a MCMC and assuming a Gaussian likelihood. Fig-
ure 8 shows our parameter constraints, while the model

Fig. 8: Constraints on the double power law parameters
described in equation 6.1 by jointly fitting all the mea-
surements in Fig. 7. The red crosses indicate the value of
the parameters that maximise the likelihood, while the blue
squares correspond to the medians.

prediction is shown in Fig 7 as a solid black line. Our best-
fit parameters are reported in Table 217. We repeated the
same analysis assuming a single power law, as parametrised
in Joachimi et al. (2011). The best-fit parameters are also
reported in Table 2. The larger χ2/dof of the single power
law compared to the double power law suggests that the lat-
ter is a better description of our current data, although the
scatter between the points at low L is still too large to draw
definitive conclusions and the data are also mildly inconsis-
tent in that regime. The degeneracy between the param-
eters, and in particular between Aβ and Lscale, shows that
the data can weakly constrain the model. Nevertheless, the
emerging picture seems to support more the broken power
law scenario presented in Fortuna et al. (2021), but with a
transition luminosity around 0.4 − 0.6L0, also in line with

17 We note that the parameters that maximise the likelihood
differ from the medians of the posterior distributions as a con-
sequence of the degeneracies between the parameters. This is
particularly evident for β1, which has negative slope, β1 = −0.75.
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Fig. 9: Projected correlation function, wg+, measured on our
different cuts in redshift of the luminous sample. The best-
fit curves are plotted on top of the data points, and the fits
are performed for rp > 6 h−1Mpc. The red points are slightly
displaced for clarity and the corresponding best-fit curve
has been displaced accordingly.

the results from simulations by Samuroff et al. (2020). The
double power law is also supported by the fact that the
alignment of redMaPPer clusters (van Uitert & Joachimi
2017; Piras et al. 2018), not included in this analysis, forms
a smooth extension towards higher mass of the alignment
observed for the high luminosity LRGs. This result is hard
to reconcile with a single shallow power law, but finds a
natural framework in the double power law scenario, where
the slope of the relation at high luminosities recovers the
trend in Joachimi et al. (2011); Singh et al. (2015).

We caution that this analysis does not aim to be fully
comprehensive, but rather to provide a sense of the current
trends. A proper analysis should jointly fit all of the mea-
surements incorporating the full luminosity distributions of
each sample, as well as accounting for the presence of satel-
lites, which might suppress the signal at low luminosities.

6.2. Redshift dependence

Having assessed that the two shape measurements produce
compatible IA signals and that their calibrations are robust,
we merge the two shape catalogues to span the largest pos-
sible range in redshift. This allows us to extend the sample
from the low-z, high S/N galaxies, where only DEIMOS
provides shapes, to the high-z, low S/N galaxies, where we
preferentially measure the shapes via lensfit. In the case
of overlap between DEIMOS and lensfit, we select the
DEIMOS shapes. We only focus on the luminous sam-
ple as we are interested in a long redshift baseline with the
same luminosity cut. In this way, we can probe the redshift
evolution of the sample, without confusing the results with
any luminosity dependence.

Our final catalogue contains 115 322 galaxies that we
split at z = 0.585, which roughly provides two equally pop-
ulated bins. We call these two samples Z1 and Z2. The
measurements for wg+ are presented in Fig. 9. The best-fit
values for the two redshift bins are listed in Table 1 and
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Fig. 10: Intrinsic alignment amplitude, AIA, as a function of
redshift and luminosity for different best-fit values in the lit-
erature. Different markers refer to different studies and are
colour-coded based on their luminosity: MegaZ (Joachimi
et al. 2011) is shown as triangles, LOWZ (Singh et al. 2015)
as circles, GAMA (Johnston et al. 2019) as squares and the
LRG luminous sample Z1 and Z2 as stars.

agree within their error bars, despite their mean redshift
being 〈z〉 = 0.44 and 〈z〉 = 0.70, respectively.

We note that the χ2 of our Z2 sample is quite high:
This is driven by the poor fit of the clustering signal. We
attribute this to our photo−z, which at high redshift are
less reliable. We note, however, that the uncertainty in the
IA amplitude is large enough to absorb the inaccuracies in
p(zspec|zphot), such that modifying the redshift distributions
has little impact on the recovered IA amplitude.

Figure 10 compares our results with the best-fit am-
plitudes at various redshifts found by previous studies
(Joachimi et al. 2011; Singh et al. 2015; Johnston et al.
2019). The colour of the data points reflects the luminosity
of the sample used to measure the signal18. As previously
discussed, galaxies with different luminosities may manifest
different levels of IA, and hence even with a lack of red-
shift dependence, we should still expect points at different
amplitudes: the bottom part of the plot should be mainly
populated by darker points and the upper part by brighter
points. Figure 10 confirms this scenario: overall, the points
exhibit a similar alignment and the scatter between the
different points is consistent with the extra luminosity de-
pendence. We can conclude that there is little evidence for
a strong redshift dependence of the IA signal.

7. Conclusions

We have constrained the IA signal of a sample of LRGs se-
lected by Vakili et al. (2020) from KiDS-1000, which images
∼ 1000 deg2. These data allowed us to investigate the lumi-
nosity dependence and the redshift evolution of the signal.

18 The colour of the marker corresponds to the bin centre, which
may not be sufficient if the range in luminosity is large, as it is
typically the case for these samples. The information provided
by the colour has therefore only qualitative meaning and should
be considered as such.
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To do so, we measured the shapes of the LRGs with two
different algorithms, DEIMOS and lensfit. We used cus-
tom image simulations to calibrate and correct the residual
biases that arise from measurements of noisy images.

We used the calibrated ellipticities to compute the pro-
jected position-shape correlation function wg+ and analyse
the signals obtained by the two different algorithms in-
dependently, thus exploring the dependence of IA on the
specific shape method employed. We found lensfit mea-
surements to be overall noisier than the DEIMOS ones
and we attributed this to the prevalence of faint galaxies
in the sample, due to the internal magnitude cut in the
lensfit algorithm. Because bright galaxies typically carry
more alignment signal, this cut, which removes galaxies
with mr < 20, can potentially reduce the IA contamina-
tion in KiDS cosmic shear analyses, which employ lensfit
as the shape method. For a sub-sample of galaxies, where
both shape methods return successful measurements of the
shapes, we find a remarkable agreement in the measured
wg+, with a difference in the signal of 0.003 ± 0.13 (ampli-
tude of a fitted power law).

We explored the luminosity dependence and the red-
shift evolution independently, selecting our galaxies in such
a way that ensures the two do not mix. Within the lumi-
nosity range probed by the measurements our results agree
with previous studies (Joachimi et al. 2011; Singh et al.
2015; Johnston et al. 2019). However, a single power law
fit, as was used in Joachimi et al. (2011) and Singh et al.
(2015) does not describe the measurements well. Instead,
our results suggest a more complex dependence with lumi-
nosity: for Lr . 2.9 × 1010h−2Lr,� the IA amplitude does not
vary significantly, whereas the signal rises rapidly at higher
luminosity. This also has implications for the width of the
luminosity binning, as the use of broad bins may complicate
the interpretation of the measurements. Analyses that aim
to combine these measurements to model the luminosity
dependence should incorporate the underlying luminosity
distributions to properly link the signal to the galaxy lu-
minosity. Nevertheless, we provide a preliminary fit on the
current measurements available in the literature and found
that the data are best described by a broken power law.
This result can already be used by cosmic shear analyses
to improved their modelling of the IA carried by the red
galaxy population. We remind the reader that this sam-
ple is not representative of the galaxy population. Different
galaxy samples carry different alignment signals and should
thus be individually modelled as described in Fortuna et al.
(2021).

To probe the redshift dependence of the IA signal with
the largest baseline to date, we merge the DEIMOS and
lensfit catalogues. We find no evidence for redshift evolution
of the IA signal. This result is in line with previous studies
of LRG samples (Joachimi et al. 2011; Singh et al. 2015),
and it is consistent with the current paradigm that IA is
set at the moment of galaxy formation. However, it is also
possible that galaxy mergers counteract the evolution of the
tidal alignment, such that the net signal does not change.
Further improvements in the measurements are needed to
distinguish between scenarios.
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Hoffmann, K., Bel, J., Gaztañaga, E., et al. 2015, MNRAS, 447, 1724
Huang, H.-J., Mandelbaum, R., Freeman, P. E., et al. 2016, MNRAS,

463, 222
Jarvis, M., Bernstein, G., & Jain, B. 2004, MNRAS, 352, 338
Joachimi, B. & Bridle, S. L. 2010, A&A, 523, A1
Joachimi, B., Cacciato, M., Kitching, T. D., et al. 2015,

Space Sci. Rev., 193, 1
Joachimi, B., Mandelbaum, R., Abdalla, F. B., & Bridle, S. L. 2011,

A&A, 527
Johnston, H., Georgiou, C., Joachimi, B., et al. 2019, A&A, 624, A30
Kannawadi, A., Hoekstra, H., Miller, L., et al. 2019, A&A, 624, A92
Kirk, D., Bridle, S., & Schneider, M. 2010, MNRAS, 408, 1502
Knebe, A., Gill, S. P. D., Gibson, B. K., et al. 2004, ApJ, 603, 7
Krause, E., Eifler, T., & Blazek, J. 2016, MNRAS, 456, 207
Kuijken, K. 2011, The Messenger, 146, 8
Kuijken, K., Heymans, C., Dvornik, A., et al. 2019, A&A, 625, A2
Landy, S. D. & Szalay, A. S. 1993, ApJ, 412, 64
Laureijs, R., Amiaux, J., Arduini, S., et al. 2011, arXiv e-prints,

arXiv:1110.3193
Lewis, A. & Bridle, S. 2002, Phys. Rev. D, 66, 103511
Lewis, A., Challinor, A., & Lasenby, A. 2000, ApJ, 538, 473
Liske, J., Baldry, I. K., Driver, S. P., et al. 2015, MNRAS, 452, 2087

MacCrann, N., Becker, M. R., McCullough, J., et al. 2020, arXiv e-
prints, arXiv:2012.08567

Mancone, C. L. & Gonzalez, A. H. 2012, PASP, 124, 606
Mandelbaum, R., Blake, C., Bridle, S., et al. 2011, MNRAS, 410, 844
Mandelbaum, R., Hirata, C. M., Ishak, M., Seljak, U., & Brinkmann,

J. 2006, Mon. Not. R. Astron. Soc, 367, 611
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Appendix A: m-bias calibration

In this Appendix, we detail our procedure to calibrate the
m-bias in our shape measurements. We follow the same pro-
cedure for both DEIMOS and lensfit, but we present the
results separately.

Appendix A.1: DEIMOS

One of the key features of DEIMOS that was exploited
by Georgiou et al. (2019a) is that the weight function that
is used to measure the moments of the surface brightness
distribution can be adjusted. As explained in Sect. 3, we
follow Georgiou et al. (2019b) and adopt a Gaussian weight
function with a width riso. However, not only the radial
profile can be changed, but one can also choose between
a circular or an elliptical weight function. Hence, before
proceeding with the shape calibration, we investigate which
choice of weight function would suit our data best.

In both cases, the weight function is centred on the cen-
troid of the galaxy, with the size and ellipticity iteratively
matched to those measured for the galaxy (see Georgiou
et al. 2019b, for details). While an elliptical weight function
matches the shape of an elliptical galaxy better, a circular
one generally performs better on small and faint objects.

The circular weight function performs similar to the el-
liptical weight function for low-to-intermediate S/N (S/N<
60), but with an overall constant bias of ∼ 0.2 as the S/N
increases. Hence, the elliptical weight function performs sig-
nificantly better for more than half of the (real) galaxy sam-
ple, which motivates our choice to adopt an elliptical weight
function in our analysis.

DEIMOS measured the shapes of 13 301 simulated
LRGs from our image simulations, and we use these to cali-
brate our ellipticity estimates. To do so, we first explore the
dependence of the m-bias on the individual galaxy param-
eters S/N and R, as discussed in Sect. 3. Figure 3 indicates
that m(R) is well described by a polynomial curve, which we
truncate at degree 3, p(R) = p1R+ p2R2 + p3R3, while c(S/N)
is well described by: d(S/N) = d1/

√
S/N + d2/S/N.

We have tested different combinations of the two func-
tions m(S/N) and m(R), and explored if higher-order poly-
nomials are needed: while the fit to m(R) is indeed better
described by a polynomial of degree 5, we stress that we
are not interested to reproduce all of the noisy features in
the data, but rather to capture the trend in the two com-
ponents. We therefore keep the number of the parameters
as low as possible. This is also motivated by the fact that
the image simulations suffer from galaxy repetitions.

The final expression for our empirical correction for the
DEIMOS measurements is then:

m(S/N,R) = b0 +
1 + d(S/N)

1 + p(R)
. (A.1)

To find the best-fit parameters in A.1, we re-compute
the value of the m−bias by binning the data in 64 regions us-
ing the k−means algorithm19. We then measure the bias for
the two components ε1,2 in each region, identifying the bin
coordinate in S/N and R as their mean value within the bin.
We then fit the average of the two components (m1 + m2)/2
with equation A.1. Some of the galaxies have very small

19 https://scikit-learn.org/stable/modules/generated/
sklearn.cluster.KMeans.html

Table A.1: Best-fit parameters for the empirical correction
of the two-dimensional multiplicative bias surface (Sect.
3.3).

Parameter DEIMOS lensfit
b0 −0.895 0.1794
d1 5.238 −5.081
d2 −0.006 1.292
p1 −1.900 −0.972
p2 5.147 0.669
p3 −3.148 0.783
p4 – −0.698

shape measurement errors, and to avoid them dominating
the fit, we also added an intrinsic scatter σint to our error-
bars. This accounts for the fact that the number of unique
galaxies in our simulations is limited and mitigates the im-
portance of the highly resolved ones. The intrinsic scatter
σint is chosen such that the reduced χ2 is ∼ 1. The best-fit
parameters are reported in Table A.1. We stress here that
since we are only correlating shapes with positions, we are
not interested in a perfect calibration of the bias per galaxy,
but rather want to ensure that the mean ellipticity of an
ensemble is unbiased.

Appendix A.2: lensfit

In the case of lensfit we follow a very similar procedure
to calibrate the residual m-bias. lensfit successfully mea-
sured the shapes of 17 573 simulated galaxies, which are
used for the calibration. The dependence of the m-bias with
S/N can be described by the same parametrisation that
we used for the DEIMOS sample, d(S/N), while m(R) is
better described by a polynomial of degree four, p(R) =
p1R + p2R2 + p3R3 + p4R4.

The combination that best reproduces our measure-
ments of the m-bias in k-means cells of the two-dimensional
space (S/N,R) is

m(S/N,R) = b0 + d(S/N) + p(R) , (A.2)

with the specific values of the parameters reported in Ta-
ble A.1. We note that compared to DEIMOS, the lensfit-
bias is small, and hence so is our correction.

Appendix B: Redshift distributions

We describe here the redshift distributions, p(zspec|zphot), em-
ployed in our analysis as reported in Sect. 5 and which are
used in the computation of the angular power spectra in
Eq. (5.12). We bin the galaxies for which we have spec-
troscopic redshifts in bins of ∆zdensephot = 0.0146(1 + z) and

∆zluminousphot = 0.0139(1 + z) with an iterative procedure; this

constructs unequal binning whose size increases with z. The
last bin is adjusted to avoid spurious results: if the max-
imum redshift found with the iterative procedure exceed
the maximum redshift of the sample, we remove the last
bin and extend the second-to-last up to zmax. In the case
of the luminous sample we further increase the scatter at
high redshift to account for the increasing uncertainty of
our photometric redshifts: for z > 0.7 we increase the bin
width to ∆zluminousphot = 0.027. We adopt the same approach

for the Z1 and Z2 samples, for which we use, respectively,
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Fig. B.1: The p(zspec|zphot) of our dense and luminous sam-
ples.

σz = 0.0133 and 0.0190. We use the resulting spec-z his-
tograms in our analysis. We employ the same conditional
redshift distributions for both our density and shape sam-
ples; while this is a very good approximation for DEIMOS,
lensfit lacks bright galaxies that would populate our spec-z,
and thus this approximation might partially be responsible
for the worse fit of the model.

We have tested that our IA constraints are only
marginally dependent on the width of the bins adopted,
and the changes in the best-fit amplitude are subdominant
to the statistical uncertainty.

Appendix C: Contamination from galaxy-galaxy
lensing

As discussed in Sect. 5.2, galaxy-galaxy lensing is the main
astrophysical contaminant to our signal. Here, we focus on
its dependence on the line-of-sight integration range. The
lensing and the IA signals scale differently with distance:
this can be used to maximise the signal and avoid an excess
of contamination. In this Appendix we therefore explore in
more detail the modelling of the galaxy-galaxy lensing and
how this has guided our choice for the value of Πmax.

Figure C.1 shows the amount of lensing contamination
as a function of the maximum Π used in the integral along
the line-of-sight. We illustrate it by plotting the cumulative
contribution of the galaxy-galaxy lensing over the one of
IA for different values of the truncation, Πmax. To generate
the signal, we use the p(zspec|zphot) associated with the dense
sample and evaluate the correlation functions at the mean
redshift of the sample, assuming the fiducial bias and IA
amplitude reported in Table 2. The ratio is almost constant
in rp, thus we plot it for fixed rp = 10 h−1Mpc. We also note
that the lensing signal has negligible impact for negative Π
because the source is in front of the lens in that case.

In principle, if one had perfect knowledge of the galaxy-
galaxy lensing contribution, extending the integration up
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Fig. C.1: Ratio of the cumulative galaxy-galaxy lensing sig-
nal over the cumulative IA signal as a function of Πmax at
the mean redshift of the dense sample, z = 0.44.

to very large line-of-sight separations would allow us re-
cover the full IA signal from the measurements, without
discarding any information. In practice, even though we
fully model the galaxy-galaxy lensing contribution, we are
limited by the accuracy of the lensing modelling we rely on,
and thus it is safer to truncate the integral to values of Π
that are not severely affected by it.

We use Fig. C.1 to choose the fiducial Πmax that enters in
Eq.( 4.5): although the specific values of the ratio depend
on the input parameters (bg, AIA), it provides a realistic
estimate of the amount of contamination for our LRG sam-
ples. We chose as our fiducial setup a conservative value of
Πmax = 120 h−1Mpc, which ensures that the mean contami-
nation is below ∼ 20% of the signal.

Appendix D: Contamination from magnification

The changes in the galaxy number counts determined by
lensing magnification arise as a result of two competing ef-
fects: on one hand, the lensing locally stretches the sky,
diluting the observed number density; on the other hand, it
enlarges the apparent sizes of the galaxies without modify-
ing the surface brightness: at the faint end, this allows the
detection of galaxies that are intrinsically fainter than the
magnitude limit, enhancing the observed number density.

The theory of magnification for flux-limited surveys is
well established and allows us to relate the changes in the
number density to the differential galaxy count n(m) over a
given band magnitude range from m to m+dm (Bartelmann
& Schneider 2001; Joachimi & Bridle 2010):

α(m) = 2.5
d log[n(m)]

dm
. (D.1)

The case of a non-flux-limited sample, such as our LRG
sample, is more complicated and we lack a proper theoret-
ical framework for the interpretation of α. Here, we follow
von Wietersheim-Kramsta et al. (2021) and calibrate α us-
ing dedicated mocks, which we present in Appendix G. We
remind the reader that our samples are selected by imposing
a luminosity threshold, which implies a redshift-dependent
magnitude selection.
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The calibration works as follows: the mocks provide the
reference relation between the convergence κ and the slope
α, which we can measure as the difference in the number
density of a ’magnified’ sample and a ’non-magnified’ one,

n(< m) − n0(< m)
n0(< m)

≈ 2(α − 1)κ . (D.2)

Here, n(< m) is the local number density of magnified
sources with magnitudes below m, while n0(< m) is the un-
derlying true number density without the enhancement due
to the flux magnification and the simultaneous lensing di-
lution.

We used our mocks to measure α in Eq. (D.2), ob-
tained as the mean value of κ on sufficiently small patches
of the sky. To partition the sky we use the public available
python module Healpy20 (Zonca et al. 2019), based on the
HEALPix pixellization of the sphere21 (Górski et al. 2005).
We use this value of α to calibrate the magnitude range
over which the observable α in equation D.1 best agrees
with the true one obtained from equation D.2. If the mocks
reproduce the data selection function to good accuracy, this
provides the optimal magnitude range to use to measure α
via observable quantities (Eq. (D.1)) in the data.

To evaluate equation D.1 we use the r−band magni-
tude and we ensured that the magnitude distribution of
the mocks and the data agree to high accuracy. We find
that, when applied to the data, the method results in val-
ues of α that depend somewhat on the binning scheme em-
ployed along the redshift baseline. While the values of α
are robust against changing the bins at intermediate and
high redshifts, the very low-z bins are poorly constrained by
the method. However, at such low redshifts magnification
is negligible, and our samples contain only a few galaxies,
so it is reasonable to expect the same value of α to hold for
the entire sample. Moreover the LRG selection ensures a
constant comoving number density, which reduces the sen-
sitivity to magnification even further.

We find α ∼ 1.5 for both our dense and luminous sam-
ple. In Appendix E we show that the effect of including
magnification is subdominant in our analysis.

Appendix E: Systematic tests and significance of
the detection

To ensure the robustness of our analysis, we perform a num-
ber of tests for residual systematics. We present the results
of these in this Appendix. Many of these are commonly
used to test weak gravitational lensing signals.

In one of the most basic tests the galaxy shapes are ro-
tated by 45 deg and the correlation between ε× and galaxy
position, wg× is measured. This correlation is expected to
vanish, and any detection of a non-vanishing signal is there-
fore an indication of residual systematics. Table E.1 reports
the reduced χ2

ν,null, which we used to assess the significance
of the signal against the null hypothesis for both wg+ and
wg×. We choose a significance level of 5%: for p−values be-
low 0.05 we discard the null hypothesis. We can see that
all of our wg× measurements have a p−value above 0.05 and
thus support the null hypothesis. In contrast, we observe
a significant detection for all of our wg+ measurements, for
both DEIMOS and lensfit shapes.

20 https://healpy.readthedocs.io/en/latest/
21 http://healpix.sourceforge.net

As a further look into possible systematics in the data,
we measure the signal for a very large value of the line-
of-sight truncation, Πmax = 1000 h−1Mpc, using our dense
sample. Extending the value of Πmax to very large separa-
tions introduces uncorrelated pairs into the estimator, and
thus we expect the IA signal to vanish, while the galaxy-
galaxy lensing can potentially arise. We find a signal con-
sistent with a null detection, with χ2

ν,null = 0.35 and p−value
of 0.96.

We also investigated the impact of specific choices for
the setup of our modelling, with a particular focus on how
our results depend on the value of the Πmax adopted in the
analysis. To do so, we repeat our analysis of the dense sam-
ple using two different values of Πmax: 90 and 180 h−1Mpc.
Table E.2 reports our results. We find compatible results
that also agree with our fiducial value of Πmax = 120 h−1Mpc.

In Table E.2 we also report the results when we include
magnification in the modelling for the dense sample, or
ignore it for the luminous sample. The resulting parameter
estimates agree with the baseline results (also see Sect. 6),
suggesting magnification is small in our data, as expected
from theory (Unruh et al. 2020).

Appendix F: IA dependence on the shape
measurement method

Singh & Mandelbaum (2016) compared the IA signal mea-
sured with different shape methods and found that the sig-
nal depends on the specific algorithm employed. Georgiou
et al. (2019b) explored this further, and used DEIMOS to
show that the IA signal depends on the width of the weight
function. Since different methods use different weight func-
tions, the difference in the IA detection can be linked to the
parts of the galaxies they probe.

In this Appendix, we therefore explore how the IA sig-
nal depends on the shape measurement methods used in our
analysis. To ensure this is done consistently, we only select
galaxies that belong to both our DEIMOS and lensfit cat-
alogues, irrespective whether they are part of the luminous
or dense sample. We identify 173 499 galaxies in common
between the two shape catalogues.

We measure wg+ for this sub-sample for both shape
catalogues, and show the difference in the signal, ∆wg+ =
wg+,DEIMOS − wg+,lensfit (indigo squared markers) in Fig. F.1.
The error bars are computed via bootstrap; we are only in-
terested in the shape noise contribution: we are measuring
the difference of signals obtained using the same sample of
galaxies and thus the sample variance should vanish. We
generate 215 re-samplings with replacement of our input
galaxies and provide the same input catalogue to both our
DEIMOS and lensfit measurement of wg+. The error bars
are then computed as the standard deviation of the differ-
ence in the measured signal for this ensemble.

To quantify the amplitude of the signal to the potential
differences in measurement method, we fit both wg+,DEIMOS
and ∆wg+ with a curve of the form f (rp) = A/rp, for rp >

6 h−1Mpc. The best-fit amplitudes are, respectively, 0.90 ±
0.17 and 0.003 ± 0.13, which means that we detect a signal
that is more than six sigma above the uncertainty due to
the choice in the shape measurement algorithm adopted.
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Table E.1: Reduced χ2 statistics to assess the significance of our signals wg+ and wg× against the null hypothesis.

Sample Shapes Signal χ2
ν,null p−value

dense DEIMOS wg+ 8.01 (7.56) 4.88 × 10−13 (4.35 × 10−6)
wg× 0.59 (0.36) 0.83 (0.83)

lensfit wg+ 3.52 (4.99) 0.0001 (0.0005)
wg× 0.66 (0.64) 0.76 (0.63)

luminous DEIMOS wg+ 9.46 (5.85) 6.66 × 10−16 (0.0001)
wg× 0.37 (0.33) 0.96 (0.85)

lensfit wg+ 2.48 (1.49) 0.006 (0.20)
wg× 0.40 (0.40) 0.95 (0.81)

Notes. A detection of wg× would hint at the presence of unaccounted systematics in the measurements. The numbers in brackets
refer to the signal for rp > 6 Mpc/h.

Table E.2: Tests of the modelling setup.

Sample bg AIA χ2
red

DEIMOS
dense (120, baseline) 1.59+0.04

−0.04 3.69+0.66
−0.65 0.78

dense (90) 1.60+0.04
−0.04 3.99+0.73

−0.72 0.67
dense (180) 1.58+0.05

−0.05 3.50+0.69
−0.70 0.71

dense (120, w/o magnification) 1.59+0.04
−0.04 3.67+0.66

−0.64 0.78
dense (120, w/o lensing and magnification) 1.59+0.04

−0.04 3.47+0.67
−0.66 0.78

luminous (120, baseline) 2.06+0.04
−0.04 4.03+0.81

−0.79 1.19
luminous (120, w/o magnification) 2.06+0.04

−0.04 4.01+0.82
−0.81 1.19

luminous (120, w/o lensing and magnification) 2.06+0.04
−0.04 3.84+0.80

−0.80 1.19

Notes. The value of Πmax adopted for the measurement is reported in brackets. The same value is assumed in the model. The tests
are always performed using the DEIMOS shape catalogue.
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Fig. F.1: Difference in the wg+ measurements as measured
by DEIMOS and lensfit. The indigo dashed line shows
the best-fit amplitude of the difference, here parametrised
as A/rp. Similarly, the light blue dashed line illustrates
the best-fit amplitude for the DEIMOS sample, both per-
formed for rp > 6Mpc/h. The shaded areas delimit the 1σ
contour of the fit.

Appendix G: Mock catalogues

To investigate the impact of magnification bias on the in-
terpretation of our measurements, we generate two mock
catalogues that resemble our LRG samples. Our simulated
catalogues are obtained from the KiDS photometric mock
catalogue presented in van den Busch et al. (2020), which

Table G.1: Parameters of the Student’s t-distributions that
best-fit the residuals (zphot − zspec)/σz of our samples.

Sample ν µ s
dense 3.79 0.06 0.90
luminous 3.99 −5.43 × 10−6 0.86

is based on the MICEv2 simulation22 (Fosalba et al. 2015a;
Crocce et al. 2015; Fosalba et al. 2015b; Carretero et al.
2017; Hoffmann et al. 2015) and is specifically designed to
reproduce the KiDS photometry. We did not run the LRG
selection algorithm on the mock, but rather used their ob-
served location in the redshift-colour space (u−g, g−r, r− i,
i − z) to select them in the mock.

We first apply a broad colour selection using the MICE
z_cgal ’spectroscopic’ redshift. After assigning the photo-z
to our mocks, we repeat the selection replacing the spec-
troscopic redshift with the photometric one. The photo-
metric redshifts are designed to reproduce the distributions
reported in Sect. 3.3 of Vakili et al. (2020). To do so, we
draw a random value from a Student’s t−distribution cen-
tred on zspec−µσz and with the scale parameter equal to sσz,
with µ, ν and s the Student’s t−parameters fitted to the full
distribution (of the real data). We remind the reader that ν
defines the peakiness of the distribution, µ its mean and s
sets the width. In the limit of the Student’s t−distribution
approaching a Gaussian (ν → ∞), s can be interpreted as
the standard deviation of the distribution.

22 http://maia.ice.cat/mice/
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Fig. G.1: Comparison between the redshift distributions of the data and those reproduced by the mocks. Left: The
photometric redshift distribution of our data is shown as an orange hatched histogram, while the solid red line shows
the distribution of the photometric redshifts of the mock, obtained from the true (’spectroscopic’) redshifts (blue solid
line) as detailed in the text. Right: Comparison of the mock spectroscopic redshift distribution (solid blue line) and the
estimated spectroscopic distribution of our data (light blue line).

We note that our samples differ from Vakili et al. (2020),
since we exclude the galaxies that overlap with the lumi-
nous sample from the dense sample. We therefore recom-
pute the parameters of the Student’s t−distributions specif-
ically for our samples and report these in Table G.1. Some
care has to be taken when assigning σz to the mocks. The
per-galaxy σz of the LRG samples correlates with the mag-
nitude of the galaxy. We therefore identify the closest real
galaxy in the (z,mr) space to each galaxy in the mock, and
assign it the corresponding σz. We repeat the process for
one iteration, replacing the ’spectroscopic’ redshift with the
preliminary estimate of the photometric one. We note that
this procedure results in multiple assignments of the same
σz to the mock galaxies, but this is not a concern as we do
not require it to be unique.

Since we require a high fidelity reproduction of the line-
of-sight distribution of our galaxies, we divide our samples
and their corresponding mock catalogues in thin redshift
slices and match the galaxy number density per slice. At
this step, we do not require a perfect match. In this way,

we still have enough galaxies to apply the same mpivot
r (z) cut

as for our real data. We repeat these steps iteratively until
the number densities are matched between the samples. We
tested that the final p(zspec|zphot) of our mocks are in good
agreement with the data p(zspec|zphot) (see Fig. G.1) and that
the resulting clustering signal at large scales reproduces the
one in our data.

We generate two sets of mock catalogues: a magnified
one and one without magnification. We use these for the
calibration of α as discussed in Appendix D.
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