468 research outputs found

    Construction of a surface air temperature series for Qingdao in China for the period 1899 to 2014

    No full text
    Abstract. We present a homogenized surface air temperature (SAT) time series at 2 m height for the city of Qingdao in China from 1899 to 2014. This series is derived from three data sources: newly digitized and homogenized observations of the German National Meteorological Service from 1899 to 1913, homogenized observation data of the China Meteorological Administration (CMA) from 1961 to 2014 and a gridded dataset of Willmott and Matsuura (2012) in Delaware to fill the gap from 1914 to 1960. Based on this new series, long-term trends are described. The SAT in Qingdao has a significant warming trend of 0.11 ± 0.03 °C decade−1 during 1899–2014. The coldest period occurred during 1909–1918 and the warmest period occurred during 1999–2008. For the seasonal mean SAT, the most significant warming can be found in spring, followed by winter. The homogenized time series of Qingdao is provided and archived by the Deutscher Wetterdienst (DWD) web page under overseas stations of the Deutsche Seewarte (http://www.dwd.de/EN/ourservices/overseas_stations/ueberseedoku/doi_qingdao.html) in ASCII format. Users can also freely obtain a short description of the data at https://doi.org/https://dx.doi.org/10.5676/DWD/Qing_v1 And the data can be downloaded at http://dwd.de/EN/ourservices/overseas_stations/ueberseedoku/data_qingdao.txt

    EU-Sozialismus statt freie Markwirtschaft

    Get PDF

    On the Role of Global Warming on the Statistics of Record-Breaking Temperatures

    Full text link
    We theoretically study long-term trends in the statistics of record-breaking daily temperatures and validate these predictions using Monte Carlo simulations and data from the city of Philadelphia, for which 126 years of daily temperature data is available. Using extreme statistics, we derive the number and the magnitude of record temperature events, based on the observed Gaussian daily temperatures distribution in Philadelphia, as a function of the number of elapsed years from the start of the data. We further consider the case of global warming, where the mean temperature systematically increases with time. We argue that the current warming rate is insufficient to measurably influence the frequency of record temperature events over the time range of the observations, a conclusion that is supported by numerical simulations and the Philadelphia temperature data.Comment: 11 pages, 6 figures, 2-column revtex4 format. For submission to Journal of Climate. Revised version has some new results and some errors corrected. Reformatted for Journal of Climate. Second revision has an added reference. In the third revision one sentence that explains the simulations is reworded for clarity. New revision 10/3/06 has considerable additions and new results. Revision on 11/8/06 contains a number of minor corrections and is the version that will appear in Phys. Rev.

    Modeling long-range memory with stationary Markovian processes

    Full text link
    In this paper we give explicit examples of power-law correlated stationary Markovian processes y(t) where the stationary pdf shows tails which are gaussian or exponential. These processes are obtained by simply performing a coordinate transformation of a specific power-law correlated additive process x(t), already known in the literature, whose pdf shows power-law tails 1/x^a. We give analytical and numerical evidence that although the new processes (i) are Markovian and (ii) have gaussian or exponential tails their autocorrelation function still shows a power-law decay =1/T^b where b grows with a with a law which is compatible with b=a/2-c, where c is a numerical constant. When a<2(1+c) the process y(t), although Markovian, is long-range correlated. Our results help in clarifying that even in the context of Markovian processes long-range dependencies are not necessarily associated to the occurrence of extreme events. Moreover, our results can be relevant in the modeling of complex systems with long memory. In fact, we provide simple processes associated to Langevin equations thus showing that long-memory effects can be modeled in the context of continuous time stationary Markovian processes.Comment: 5 figure

    Variability in the Slope Water and its relation to the Gulf Stream path

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 35 (2008): L03606, doi:10.1029/2007GL032183.Sea Surface Temperature (SST) and Sea Surface Height (SSH) data for 1993–2007 for the North Atlantic are combined with hydrographic data at 69W to investigate the relation between the Gulf Stream (GS) position and the Slope Water properties. SST anomalies north of the GS are correlated with changes in its path. The lag of this correlation is such that positive temperature anomalies precede northward shifts of the GS, and suggests that SST anomalies move westward with speeds of several cm/s. EOF analysis of the SST and SSH fields shows that cooling and strengthening of the SW flow are in phase over the Slope Water, which is mirrored in the vertical structure of these fields at 69W, indicating larger transports in the Deep Western Boundary Current lead to southward shifts of the mean GS path. This relation between the Slope Water and the GS path provides some predictability for the latter
    corecore