19 research outputs found

    Genetic variants of Anaplasma phagocytophilum from 14 equine granulocytic anaplasmosis cases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Equine Granulocytic Anaplasmosis (EGA) is caused by <it>Anaplasma phagocytophilum</it>, a tick-transmitted, obligate intracellular bacterium. In Europe, it is transmitted by <it>Ixodes ricinus</it>. A large number of genetic variants of <it>A. phagocytophilum </it>circulate in nature and have been found in ticks and different animals. Attempts have been made to assign certain genetic variants to certain host species or pathologies, but have not been successful so far. The purpose of this study was to investigate the causing agent <it>A. phagocytophilum </it>of 14 cases of EGA in naturally infected horses with molecular methods on the basis of 4 partial genes (<it>16S rRNA</it>, <it>groEL</it>, <it>msp2</it>, and <it>msp4</it>).</p> <p>Results</p> <p>All DNA extracts of EDTA-blood samples of the horses gave bands of the correct nucleotide size in all four genotyping PCRs. Sequence analysis revealed 4 different variants in the partial <it>16S rRNA</it>, <it>groEL </it>gene and <it>msp2 </it>genes, and 3 in the <it>msp4 </it>gene. One <it>16S rRNA </it>gene variant involved in 11 of the 14 cases was identical to the "prototype" variant causing disease in humans in the amplified part [GenBank: <ext-link ext-link-id="U02521" ext-link-type="gen">U02521</ext-link>]. Phylogenetic analysis revealed as expected for the <it>groEL </it>gene that sequences from horses clustered separately from roe deer. Sequences of the partial <it>msp2 </it>gene from this study formed a separate cluster from ruminant variants in Europe and from all US variants.</p> <p>Conclusions</p> <p>The results show that more than one variant of <it>A. phagocytophilum </it>seems to be involved in EGA in Germany. The comparative genetic analysis of the variants involved points towards different natural cycles in the epidemiology of <it>A. phagocytophilum</it>, possibly involving different reservoir hosts or host adaptation, rather than a strict species separation.</p

    The IFN-γ-Inducible GTPase, Irga6, Protects Mice against Toxoplasma gondii but Not against Plasmodium berghei and Some Other Intracellular Pathogens

    Get PDF
    Clearance of infection with intracellular pathogens in mice involves interferon-regulated GTPases of the IRG protein family. Experiments with mice genetically deficient in members of this family such as Irgm1(LRG-47), Irgm3(IGTP), and Irgd(IRG-47) has revealed a critical role in microbial clearance, especially for Toxoplasma gondii. The in vivo role of another member of this family, Irga6 (IIGP, IIGP1) has been studied in less detail. We investigated the susceptibility of two independently generated mouse strains deficient in Irga6 to in vivo infection with T. gondii, Mycobacterium tuberculosis, Leishmania mexicana, L. major, Listeria monocytogenes, Anaplasma phagocytophilum and Plasmodium berghei. Compared with wild-type mice, mice deficient in Irga6 showed increased susceptibility to oral and intraperitoneal infection with T. gondii but not to infection with the other organisms. Surprisingly, infection of Irga6-deficient mice with the related apicomplexan parasite, P. berghei, did not result in increased replication in the liver stage and no Irga6 (or any other IRG protein) was detected at the parasitophorous vacuole membrane in IFN-γ-induced wild-type cells infected with P. berghei in vitro. Susceptibility to infection with T. gondii was associated with increased mortality and reduced time to death, increased numbers of inflammatory foci in the brains and elevated parasite loads in brains of infected Irga6-deficient mice. In vitro, Irga6-deficient macrophages and fibroblasts stimulated with IFN-γ were defective in controlling parasite replication. Taken together, our results implicate Irga6 in the control of infection with T. gondii and further highlight the importance of the IRG system for resistance to this pathogen

    Occurrence and identification of risk areas of Ixodes ricinus-borne pathogens: a cost-effectiveness analysis in north-eastern Italy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Ixodes ricinus</it>, a competent vector of several pathogens, is the tick species most frequently reported to bite humans in Europe. The majority of human cases of Lyme borreliosis (LB) and tick-borne encephalitis (TBE) occur in the north-eastern region of Italy. The aims of this study were to detect the occurrence of endemic and emergent pathogens in north-eastern Italy using adult tick screening, and to identify areas at risk of pathogen transmission. Based on our results, different strategies for tick collection and pathogen screening and their relative costs were evaluated and discussed.</p> <p>Methods</p> <p>From 2006 to 2008 adult ticks were collected in 31 sites and molecularly screened for the detection of pathogens previously reported in the same area (i.e., LB agents, TBE virus, <it>Anaplasma phagocytophilum, Rickettsia </it>spp., <it>Babesia </it>spp., "<it>Candidatus Neoehrlichia mikurensis</it>"). Based on the results of this survey, three sampling strategies were evaluated <it>a</it>-<it>posteriori</it>, and the impact of each strategy on the final results and the overall cost reductions were analyzed. The strategies were as follows: tick collection throughout the year and testing of female ticks only (strategy A); collection from April to June and testing of all adult ticks (strategy B); collection from April to June and testing of female ticks only (strategy C).</p> <p>Results</p> <p>Eleven pathogens were detected in 77 out of 193 ticks collected in 14 sites. The most common microorganisms detected were <it>Borrelia burgdorferi </it>sensu lato (17.6%), <it>Rickettsia helvetica </it>(13.1%), and "<it>Ca. N. mikurensis</it>" (10.5%). Within the <it>B. burgdorferi </it>complex, four genotypes (i.e., <it>B. valaisiana, B. garinii, B. afzelii</it>, and <it>B. burgdorferi </it>sensu stricto) were found. Less prevalent pathogens included <it>R. monacensis </it>(3.7%), TBE virus (2.1%), <it>A. phagocytophilum </it>(1.5%), <it>Bartonella </it>spp. (1%), and <it>Babesia </it>EU1 (0.5%). Co-infections by more than one pathogen were diagnosed in 22% of infected ticks. The prevalences of infection assessed using the three alternative strategies were in accordance with the initial results, with 13, 11, and 10 out of 14 sites showing occurrence of at least one pathogen, respectively. The strategies A, B, and C proposed herein would allow to reduce the original costs of sampling and laboratory analyses by one third, half, and two thirds, respectively. Strategy B was demonstrated to represent the most cost-effective choice, offering a substantial reduction of costs, as well as reliable results.</p> <p>Conclusions</p> <p>Monitoring of tick-borne diseases is expensive, particularly in areas where several zoonotic pathogens co-occur. Cost-effectiveness studies can support the choice of the best monitoring strategy, which should take into account the ecology of the area under investigation, as well as the available budget.</p

    Metagenomic Profile of the Bacterial Communities Associated with Ixodes ricinus Ticks

    Get PDF
    Assessment of the microbial diversity residing in arthropod vectors of medical importance is crucial for monitoring endemic infections, for surveillance of newly emerging zoonotic pathogens, and for unraveling the associated bacteria within its host. The tick Ixodes ricinus is recognized as the primary European vector of disease-causing bacteria in humans. Despite I. ricinus being of great public health relevance, its microbial communities remain largely unexplored to date. Here we evaluate the pathogen-load and the microbiome in single adult I. ricinus by using 454- and Illumina-based metagenomic approaches. Genomic DNA-derived sequences were taxonomically profiled using a computational approach based on the BWA algorithm, allowing for the identification of known tick-borne pathogens at the strain level and the putative tick core microbiome. Additionally, we assessed and compared the bacterial taxonomic profile in nymphal and adult I. ricinus pools collected from two distinct geographic regions in Northern Italy by means of V6-16S rRNA amplicon pyrosequencing and community based ecological analysis. A total of 108 genera belonging to representatives of all bacterial phyla were detected and a rapid qualitative assessment for pathogenic bacteria, such as Borrelia, Rickettsia and Candidatus Neoehrlichia, and for other bacteria with mutualistic relationship or undetermined function, such as Wolbachia and Rickettsiella, was possible. Interestingly, the ecological analysis revealed that the bacterial community structure differed between the examined geographic regions and tick life stages. This finding suggests that the environmental context (abiotic and biotic factors) and host-selection behaviors affect their microbiome

    A review on the eco-epidemiology and clinical management of human granulocytic anaplasmosis and its agent in Europe

    Get PDF
    Anaplasma phagocytophilum is the agent of tick-borne fever, equine, canine and human granulocytic anaplasmosis. The common route of A. phagocytophilum transmission is through a tick bite, the main vector in Europe being Ixodes ricinus. Despite the apparently ubiquitous presence of the pathogen A. phagocytophilum in ticks and various wild and domestic animals from Europe, up to date published clinical cases of human granulocytic anaplasmosis (HGA) remain rare compared to the worldwide status. It is unclear if this reflects the epidemiological dynamics of the human infection in Europe or if the disease is underdiagnosed or underreported. Epidemiologic studies in Europe have suggested an increased occupational risk of infection for forestry workers, hunters, veterinarians, and farmers with a tick-bite history and living in endemic areas. Although the overall genetic diversity of A. phagocytophilum in Europe is higher than in the USA, the strains responsible for the human infections are related on both continents. However, the study of the genetic variability and assessment of the difference of pathogenicity and infectivity between strains to various hosts has been insufficiently explored to date. Most of the European HGA cases presented as a mild infection, common clinical signs being pyrexia, headache, myalgia and arthralgia. The diagnosis of HGA in the USA was recommended to be based on clinical signs and the patient’s history and later confirmed using specialized laboratory tests. However, in Europe since the majority of cases are presenting as mild infection, laboratory tests may be performed before the treatment in order to avoid antibiotic overuse. The drug of choice for HGA is doxycycline and because of potential for serious complication the treatment should be instituted on clinical suspicion alone

    Temperature triggers immune evasion by Neisseria meningitidis.

    Get PDF
    Neisseria meningitidis has several strategies to evade complement-mediated killing, and these contribute to its ability to cause septicaemic disease and meningitis. However, the meningococcus is primarily an obligate commensal of the human nasopharynx, and it is unclear why the bacterium has evolved exquisite mechanisms to avoid host immunity. Here we demonstrate that mechanisms of meningococcal immune evasion and resistance against complement increase in response to an increase in ambient temperature. We have identified three independent RNA thermosensors located in the 5' untranslated regions of genes necessary for capsule biosynthesis, the expression of factor H binding protein, and sialylation of lipopolysaccharide, which are essential for meningococcal resistance against immune killing. Therefore increased temperature (which occurs during inflammation) acts as a 'danger signal' for the meningococcus, enhancing its defence against human immune killing. Infection with viral pathogens, such as influenza, leads to inflammation in the nasopharynx with an increased temperature and recruitment of immune effectors. Thermoregulation of immune defence could offer an adaptive advantage to the meningococcus during co-infection with other pathogens, and promote the emergence of virulence in an otherwise commensal bacterium
    corecore