2,097 research outputs found

    First Measurement of Collectivity of Coexisting Shapes based on Type II Shell Evolution: The Case of 96^{96}Zr

    Full text link
    Background: Type II shell evolution has recently been identified as a microscopic cause for nuclear shape coexistence. Purpose: Establish a low-lying rotational band in 96-Zr. Methods: High-resolution inelastic electron scattering and a relative analysis of transition strengths are used. Results: The B(E2; 0_1^+ -> 2_2^+) value is measured and electromagnetic decay strengths of the secdond 2^+ state are deduced. Conclusions: Shape coexistence is established for 96-Zr. Type II shell evolution provides a systematic and quantitative mechanism to understand deformation at low excitation energies.Comment: 5 pages, 4 figure

    Spin fluctuations in the quasi-two dimensional Heisenberg ferromagnet GdI_2 studied by Electron Spin Resonance

    Full text link
    The spin dynamics of GdI_2 have been investigated by ESR spectroscopy. The temperature dependences of the resonance field and ESR intensity are well described by the model for the spin susceptibility proposed by Eremin et al. [Phys. Rev. B 64, 064425 (2001)]. The temperature dependence of the resonance linewidth shows a maximum similar to the electrical resistance and is discussed in terms of scattering processes between conduction electrons and localized spins.Comment: to be published in PR

    Experimental observation of Aharonov-Bohm caging using orbital angular momentum modes in optical waveguides

    Get PDF
    The discovery of artificial gauge fields, controlling the dynamics of uncharged particles that otherwise elude the influence of standard electric or magnetic fields, has revolutionized the field of quantum simulation. Hence, developing new techniques to induce those fields is essential to boost quantum simulation in photonic structures. Here, we experimentally demonstrate in a photonic lattice the generation of an artificial gauge field by modifying the input state, overcoming the need to modify the geometry along the evolution or imposing the presence of external fields. In particular, we show that an effective magnetic flux naturally appears when light beams carrying orbital angular momentum are injected into waveguide lattices with certain configurations. To demonstrate the existence of that flux, we measure the resulting Aharonov-Bohm caging effect. Therefore, we prove the possibility of switching on and off artificial gauge fields by changing the topological charge of the input state, paving the way to access different topological regimes in one single structure, which represents an important step forward for optical quantum simulation

    Optical properties and electronic structure of Ca-doped alpha'-NaV2O5

    Get PDF
    The dielectric function of alpha'-Na(1-x)Ca(x)V2O5 (0 < x < 20%) was measured for the a and b axes in the photon energy range 0.8-4.5 eV at room temperature. By varying the Ca-concentration we control the relative abundancy of V4+ and V5+. We observe that the intensity of the main optical absorption peak at 1 eV is proportional to the number of V5+ ions. This rules out the interpretation as a V4+ d-d excitation, and it establishes that this is the on-rung bonding-antibonding transition.Comment: 6 pages, ReVTeX, 5 figures in encapsulated postscript forma

    Low temperature ellipsometry of NaV2O5

    Full text link
    The dielectric function of alpha'NaV2O5 was measured with electric field along the a and b axes in the photon energy range 0.8-4.5 eV for temperatures down to 4K. We observe a pronounced decrease of the intensity of the 1 eV peak upon increasing temperature with an activation energy of about 25meV, indicating that a finite fraction of the rungs becomes occupied with two electrons while others are emptied as temperature increases. No appreciable shifts of peaks were found s in the valence state of individual V atoms at the phase transition is very small. A remarkable inflection of this temperature dependence at the phase transition at 34 K indicates that charge ordering is associated with the low temperature phase.Comment: Revisions in style and order of presentation. One new figure. In press in Physical Review B. REVTeX, 4 pages with 4 postscript figure

    Orthorhombic versus monoclinic symmetry of the charge-ordered state of NaV2O5

    Full text link
    High-resolution X-ray diffraction data show that the low-temperature superstructure of alpha-NaV2O5 has an F-centered orthorhombic 2a x 2b x 4c superlattice. A structure model is proposed, that is characterized by layers with zigzag charge order on all ladders and stacking disorder, such that the averaged structure has space group Fmm2. This model is in accordance with both X-ray scattering and NMR data. Variations in the stacking order and disorder offer an explanation for the recently observed devils staircase of the superlattice period along c.Comment: REVTEX, 4 pages including 2 figures, shortened, submitted to PR

    Charge Order Driven spin-Peierls Transition in NaV2O5

    Full text link
    We conclude from 23Na and 51V NMR measurements in NaxV2O5(x=0.996) a charge ordering transition starting at T=37 K and preceding the lattice distortion and the formation of a spin gap Delta=106 K at Tc=34.7 K. Above Tc, only a single Na site is observed in agreement with the Pmmn space group of this first 1/4-filled ladder system. Below Tc=34.7 K, this line evolves into eight distinct 23Na quadrupolar split lines, which evidences a lattice distortion with, at least, a doubling of the unit cell in the (a,b) plane. A model for this unique transition implying both charge density wave and spin-Peierls order is discussed.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Magnetic correlations in infinite-layer nickelates: an experimental and theoretical multi-method study

    Full text link
    We report a comprehensive study of magnetic correlations in LaNiO2_{2}, a parent compound of the recently discovered family of infinite-layer (IL) nickelate superconductors, using multiple experimental and theoretical methods. Our specific heat, muon-spin rotation (μ\muSR), and magnetic susceptibility measurements on polycrystalline LaNiO2_{2} show that long-range magnetic order remains absent down to 2 K. Nevertheless, we detect residual entropy in the low-temperature specific heat, which is compatible with a model fit that includes paramagnon excitations. The μ\muSR and low-field static and dynamic magnetic susceptibility measurements indicate the presence of short-range magnetic correlations and glassy spin dynamics, which we attribute to local oxygen non-stoichiometry in the average infinite-layer crystal structure. This glassy behavior can be suppressed in strong external fields, allowing us to extract the intrinsic paramagnetic susceptibility. Remarkably, we find that the intrinsic susceptibility shows non-Curie-Weiss behavior at high temperatures, in analogy to doped cuprates that possess robust non-local spin fluctuations. The distinct temperature dependence of the intrinsic susceptibility of LaNiO2_{2} can be theoretically understood by a multi-method study of the single-band Hubbard model in which we apply complementary cutting-edge quantum many-body techniques (dynamical mean-field theory, cellular dynamical mean-field theory and the dynamical vertex approximation) to investigate the influence of both short- and long-ranged correlations. Our results suggest a profound analogy between the magnetic correlations in parent (undoped) IL nickelates and doped cuprates.Comment: 18 pages, 14 figure

    Examining the surface phase diagram of IrTe2_2 with photoemission

    Full text link
    In the transition metal dichalcogenide IrTe2_2, low-temperature charge-ordered phase transitions involving Ir dimers lead to the occurrence of stripe phases of different periodicities, and nearly degenerate energies. Bulk-sensitive measurements have shown that, upon cooling, IrTe2_2 undergoes two such first-order transitions to (5×1×5)(5\times1\times5) and (8×1×8)(8\times1\times8) reconstructed phases at Tc1280T_{c_1}\sim 280~K and Tc2180T_{c_2}\sim 180~K, respectively. Here, using surface sensitive probes of the electronic structure of IrTe2_2, we reveal the first-order phase transition at Tc3=165T_{c_3}=165~K to the (6×1)(6\times1) stripes phase, previously proposed to be the surface ground state. This is achieved by combining x-ray photoemission spectroscopy and angle-resolved photoemission spectroscopy, which give access to the evolution of stripe domains and a particular surface state, the energy of which is dependent on the Ir dimer length. By performing measurements over a full thermal cycle, we also report the complete hysteresis of all these phases

    Thermodynamics of Spin S = 1/2 Antiferromagnetic Uniform and Alternating-Exchange Heisenberg Chains

    Get PDF
    The magnetic susceptibility chi and specific heat C versus temperature T of the spin-1/2 antiferromagnetic alternating-exchange (J1 and J2) Heisenberg chain are studied for the entire range 0 \leq alpha \leq 1 of the alternation parameter alpha = J2/J1. For the uniform chain (alpha = 1), detailed comparisons of the high-accuracy chi(T) and C(T) Bethe ansatz data of Kluemper and Johnston are made with the asymptotically exact low-T field theory predictions of Lukyanov. QMC simulations and TMRG calculations of chi(alpha,T) are presented. From the low-T TMRG data, the spin gap Delta(alpha)/J1 is extracted for 0.8 \leq alpha \leq 0.995. High accuracy fits to all of the above numerical data are obtained. We examine in detail the theoretical predictions of Bulaevskii for chi(alpha,T) and compare them with our results. Our experimental chi(T) and C(T) data for NaV2O5 single crystals are modeled in detail. The chi(T) data above the spin dimerization temperature Tc = 34 K are not in agreement with the prediction for the uniform Heisenberg chain, but can be explained if there is a moderate ferromagnetic interchain coupling and/or if J changes with T. By fitting the chi(T) data, we obtain Delta(T = 0) = 103(2) K, alternation parameter delta(0) = (1 - alpha)/(1 + alpha) = 0.034(6) and average exchange constant J(0) = 640(80) K. The delta(T) and Delta(T) are derived from the data. A spin pseudogap with a large magnitude \approx 0.4 Delta(0) is consistently found just above Tc, which decreases with increasing T. Analysis of our C(T) data indicates that at Tc, at least 77% of the entropy change due to the transition at Tc and associated order parameter fluctuations arise from the lattice and/or charge degrees of freedom and less than 23% from the spin degrees of freedom.Comment: 53 two-column REVTeX pages, 50 embedded figures, 7 tables. Revisions required due to incorrect Eq. (39) in Ref. 51 which gives the low-T approximation for the specific heat of a S = 1/2 1D system with a spin gap; no conclusions were changed. Additional minor revisions made. Phys. Rev. B (in press
    corecore