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The magnetic susceptibilityx* (t) and specific heatC(t) versus temperaturet of the spinS51/2 antiferro-
magnetic~AF! alternating-exchange (J1 andJ2) Heisenberg chain are studied for the entire range 0<a<1 of
the alternation parametera[J2 /J1 (J1 , J2>0, J2<J1 , t5kBT/J1 , x* 5xJ1 /Ng2mB

2). For the uniform
chain (a51), the high-accuracyx* (t) andC(t) Bethe ansatz data of Klu¨mper and Johnston~unpublished! are
shown to agree very well at lowt with the respective exact theoretical low-t logarithmic correction predictions
of Lukyanov@Nucl. Phys. B522, 533 ~1998!#. Accurate (;1027) independent empirical fits to the respective
data are obtained overt ranges spanning 25 orders of magnitude, 5310225<t<5, which contain extrapola-
tions to the respective exactt50 limits. The infinite temperature entropy calculated using ourC(t) fit function
is within 8 parts in 108 of the exact value ln 2. Quantum Monte Carlo~QMC! simulations and transfer-matrix
density-matrix renormalization group~TMRG! calculations ofx* (a,t) are presented for 0.002<t<10 and
0.05<a<1, and an accurate (231024) two-dimensional (a,t) fit to the combined data is obtained for 0.01
<t<10 and 0<a<1. From the low-t TMRG data, the spin gapD(a) is extracted for 0.8<a<0.995 and
compared with previous results, and a fit function is formulated for 0<a<1 by combining these data with
literature data. We infer from our data that the asymptotic critical regime near the uniform chain limit is only
entered fora*0.99. We examine in detail the theoretical predictions of Bulaevskii@Sov. Phys. Solid State11,
921 ~1969!#, for x* (a,t) and compare them with our results. To illustrate the application and utility of our
theoretical results, we model our experimentalx(T) and specific heatCp(T) data for NaV2O5 single crystals
in detail. Thex(T) data above the spin dimerization temperatureTc'34 K are not in quantitative agreement
with the prediction for theS51/2 uniform Heisenberg chain, but can be explained if there is a moderate
ferromagnetic interchain coupling and/or ifJ changes withT. Fitting the x(T) data using ourx* (a,t) fit
function, we obtain the sample-dependent spin gap and rangeD(T50)/kB5103(2) K, alternation parameter
d(0)[(12a)/(11a)50.034(6) and average exchange constantJ(0)/kB5640(80) K. Thed(T) andD(T)
are derived from the data. A spin pseudogap with magnitude'0.4D(0) is consistently found just aboveTc ,
which decreases with increasing temperature. From ourCp(T) measurements on two crystals, we infer that the
magnetic specific heat at low temperaturesT&15 K is too small to be resolved experimentally, and that the
spin entropy atTc is too small to account for the entropy of the transition. A quantitative analysis indicates that
at Tc, at least 77% of the entropy change due to the transition atTc and associated order parameter fluctuations
arise from the lattice and/or charge degrees of freedom and less than 23% from the spin degrees of freedom.
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I. INTRODUCTION

An antiferromagnetic alternating-exchange Heisenb
chain is one in which nearest-neighbor spins in the ch
interact via a Heisenberg interaction, but with two antifer
PRB 610163-1829/2000/61~14!/9558~49!/$15.00
g
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magnetic~AF! exchange constantsJ2<J1 , J1 ,J2>0 which
alternate from bond to bond along the chain; the alterna
parameter isa[J2 /J1. Here we will be concerned with the
magnetic susceptibilityx and specific heatC versus tempera-
ture T of alternating-exchange chains consisting of spinsS
9558 ©2000 The American Physical Society
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51/2. The uniform AF Heisenberg chain is one limit of th
alternating chain in which the two exchange constants
equal (a51, J15J2[J). At the other limit is the isolated
dimer in which one of the exchange constants is zeroa
50). The present work is a combined theoretical and exp
mental study of x(T) and C(T) of the S51/2 AF
alternating-exchange chain over the entire range 0<a<1 of
the alternation parameter, with the emphasis on the reg
a&1 at and close to the uniform chain limit. This latt
regime is relevant for compounds showing second order
dimerization transitions with decreasingT. The present work
was originally motivated by our desire to accurately extr
the temperature dependent energy gapD(T) for magnetic
excitations, the ‘‘spin gap,’’ from experimentalx(T) data for
the S51/2 chain/two-leg ladder compound NaV2O5 below
its spin dimerization temperatureTc'34 K. We found that
existing theory for the alternating-exchange chain was ins
ficient to accomplish this goal. In the present work we cr
cally examine the predictions of previous theory, perform
required additional theoretical calculations, and then ap
the results to extractD(T) at T&Tc from our x(T) data for
NaV2O5 single crystals. We have extended the original g
so that we also include theoretical and experimental stu
of C(T) and how this quantity relates tox(T). In the remain-
der of this introduction we briefly review the prior theoretic
results pertaining tox(T) and C(T) of the uniform and
alternating-exchange chain to place our work in the pro
context. We then review the experimental and theoret
background on NaV2O5 and describe the plan for the rest
the paper.

A. Theory

The x(T) and C(T) of both limits of the S51/2 AF
alternating-exchange Heisenberg chain are known exa
For the dimer, thex(T) is given by the exact Eq.~8a! below
and the exactC(T) is also easily calculated. Thex(T) and
C(T) of the uniform chain forT*0.4J/kB (kB is Boltz-
mann’s constant! were estimated from calculations for chai
with <11 spins by Bonner and Fisher in 1964;1 they ex-
tended their results by extrapolating toT50, and in the case
of x(T) to the exactT50 value.2 The exact solution for
x(T) of the uniform chain was obtained using the Bet
ansatz in 1994 by Eggert, Affleck, and Takahashi, and co
pared with their low-T results from conformal field theory.3

They found, remarkably, thatx(T→0) has infinite slope.
Their numericalx(T) values are up to;10% larger than the
Bonner-Fisher extrapolation forT&0.25J/kB ~for a compari-
son of the two predictions, see Fig. 8.1 in Ref. 4!. Their
conformal field theory calculations showed that the lead
order correction to the zero temperature limit is of the fo
x(T)5x(0)$111/@2 ln(T0 /T)#%, where the value of the sca
ing temperatureT0 is not predicted by the field theory. Suc
log terms are called ‘‘logarithmic corrections’’ in the litera
ture. One of us recently presented numerical Bethe an
calculations ofx(T) with a higher absolute accuracy fo
x(T) estimated to be 131027,5 and showed that the data a
consistent with the above field theory prediction, with
additional higher order logarithmic correction, over the te
perature range 5310225<kBT/J&1023. Corresponding
C(T) calculations were also carried out, and logarithmic c
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rections were studied for this quantity as well.5 Lukyanov
has recently presented an exact theory forx(T) andC(T) at
low T, including the exact value ofT0.6 In the present work,
we compare the very recent numerical Bethe ansatz resul
Klümper anfd Johnston5 with the predictions of Lukyanov’s
theory and find agreement forx(T) to high accuracy (<1
31026) over a temperature range spanning 18 orders
magnitude, 5310225<kBT/J<531027; the agreement in
the lower part of this temperatures range is much bet
O(1027). For C(T), the logarithmic correction in Luky-
anov’s theory is insufficient to describe the Bethe ansatz d
sufficiently accurately even at very low temperatures, so
derive the next two logarithmic corrections from the Bet
ansatzC(T) data. For various applications, it would be d
sirable to have fits to thex(T) andC(T) Bethe ansatz data
which extend to higher temperatures. We describe the
mulation and implementation of fit functions, incorporatin
the influence of the logarithmic correction terms, which yie
extremely precise fits to the data for both quantities over
entire 25 decades in temperature of the calculations
310225<kBT/J<5.

The x(T) in the intermediate regime 0,a,1 has been
investigated analytically in the Hartree-Fock approximatio7

and using numerical techniques.8,9 Of particular interest here
is the regimea&1, close to the uniform limit, which is the
regime relevant to materials exhibiting a dimerization tran
tion with decreasingT such as occurs in materials exhibitin
a spin-Peierls transition. There are no accurate theore
predictions available forx(T) of the alternating-exchang
Heisenberg chain in this regime, which is the property u
ally used to initially characterize the occurrence of such
transition experimentally. To address this deficiency and
also cover a more extendeda range, we carried out extensiv
quantum Monte Carlo~QMC! simulations and transfer
matrix density-matrix renormalization group~TMRG!
calculations10,11 of x(T) for 0.05<a<1 over the tempera-
ture range 0.002<kBT/J1<10.

An interesting issue is how the spin gapD evolves with
alternation parametera as the uniform limit is approached
a→1. Because the uniform chain is a gapless quantu
critical system, the introduction of alternating exchan
along the chain has been theoretically predicted to yiel
nonanalyticD(a) behavior fora→1. We deriveD(a) by
fitting our low-t TMRG x(T) data by an expression whic
we formulated. TheD(a) results are compared with those
previous numerical calculations and with the theoretical p
diction. We infer from our data that the asymptotic critic
regime is only entered fora*0.99.

In order to be optimally useful for accurately modelin
experimentalx(T) data for alternating-exchange chain com
pounds, our QMC and TMRGx(a,T) results must first be
accurately fitted by a continuous function of botha and T.
We will introduce a general fit function which eventual
proves capable of fitting these combined data for
alternating-exchange Heisenberg chain very accurately.
first fit the x(T) of the uniform chain and isolated dime
using this function and then use the obtained fitting para
eters as end-point parameters in the fit to our combi
QMC and TMRG data for intermediate values ofa. The final
fit function is a single two-dimensional function ofa andT
for 0<a<1 which can be used to extract the~possibly
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9560 PRB 61D. C. JOHNSTONet al.
temperature-dependent! alternation parameter, exchang
constants and spin gap from experimentalx(T) data for
compounds for which theS51/2 AF alternating-exchang
Heisenberg chain Hamiltonian is appropriate. Our fit fun
tion will also be useful as a reference forx(T) calculated
from other relatedS51/2 Hamiltonians such as that inco
porating the spin-phonon interaction for spin-Peierls s
tems.

B. NaV2O5

Vanadium oxides show a remarkable variety of electro
behaviors. For example, the metallic fcc normal-spinel str
ture compound LiV2O4 shows local momentlike behavior
above;50 K, crossing over to heavy fermion behaviors b
low ;10 K.12 On the other hand, thed1 compound CaV2O5

has a two-leg trellis-ladder-layer structure13 in which all of
the V atoms are crystallographically equivalent and is
Mott-Hubbard insulator. Thex(T) shows a spin-gapD/kB

'660 K arising from strong coupling of the VS51/2 spins
across a rung.13 Modeling ofx(T) by QMC simulations con-
firmed that this compound consists magnetically of2
dimers, with an intradimer AF exchange constantJ/kB
'665 K and with very weak interdimer interactions.14

The compound NaV2O5 can also be formed. The crysta
structure was initially reported in 1975 to consist of two-l
ladders as in CaV2O5, but in a non-centrosymmetric~acen-
tric! structure~space groupP21mn) in which charge segre
gation occurs such that one leg of each ladder consist
V14 and the other of crystallographically inequivalent V15

ions.15 However, recently five different crystal structure i
vestigations showed that the structure is actually centros
metric ~space groupPmmn!, with all V atoms crystallo-
graphically equivalent at room temperature,16–20 so that
~static! charge segregation between the V atoms does no
fact, occur. This result is consistent with51V NMR investi-
gations which showed the presence of only one type o
atom at room temperature.21,22 This compound is thus for
mally a mixed-valentd0.5 system, which has been consider
in a one-electon-band picture to be a quarter-filled lad
compound.17,23 We note that from modeling optical excita
tions in the energy range 4 meV–4 eV, Damascelli and
workers initially concluded that the room-temperature str
ture of NaV2O5 is acentric;24 their analysis was consisten
with the V atoms on a rung of a ladder having oxidati
states of 4.1 and 4.9, respectively. However, this group s
sequently explained that length- and/or time-scale-
measurement issues may be involved in their interpretat
such that charge disproportionation between V atoms m
only occur locally and possibly dynamically, which cou
then be consistent with the~average long-range! crystal
structure refinements and NMR measurements.25 Theoretical
support for this scenario was provided by Nishimoto a
Ohta.26 Factor group analyses of the possible IR- a
Raman-active phonon modes and comparisons with exp
mental observations at room temperature are consistent
the centrosymmetric space group for the compound.25,27–29A
first-principles electronic structure study based on the den
functional method within the generalized gradient appro
mation showed that the total energy of the centric structur
-
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about 1.0 eV/~formula unit! lower than that of the acentric
structure,30 consistent with the recent structural studies.

One might expect that the hole-doping which occurs up
replacing Ca in CaV2O5 by Na would result in metallic prop-
erties for NaV2O5, because of the nonintegral oxidation sta
of the V cations and of the crystallographic equivalence
these atoms. However, NaV2O5 is a semiconductor.31 This
has been explained by the formation ofd1 V-O-V molecular
clusters on the rungs of the two-leg ladders, again resul
in a Mott-Hubbard insulator due to the on-site Coulom
repulsion,17,32 where in this case a ‘‘site’’ is a V-O-V mo-
lecular cluster. Thus a nonintegral oxidation state and cr
tallographic equivalence of transition metal atoms in a co
pound are not sufficient to guarantee metallic charac
simply by symmetry; all nearest-neighbor pairs, triplets,. . . ,
of transition metal atoms must also be crystallographica
equivalent, which is not the case in NaV2O5, since a V2 pair
on a rung is not crystallographically equivalent to one on
leg in the two-leg ladders. In contrast, all V atoms and pa
of V atoms in mixed-valent fcc LiV2O4 are respectively
crystallographically equivalent, resulting in metallic chara
ter as demanded by symmetry.

The V-O-V rung molecular clusters which are coupl
along the ladder direction in NaV2O5 may be considered to
form an effectiveS51/2 one-dimensional~1D! chain.17,23,32

Experimental support for this picture, often quoted in t
literature, is that the magnetic susceptibility~aboveTc , see
below! is in agreement with the Bonner-Fisher prediction f
the S51/2 Heisenberg chain, as reported by Isobe a
Ueda.33 Angle-resolved photoemission spectrosco
~ARPES! measurements on NaV2O5 by Kobayashiet al.34

showed that the electronic structure is essentially 1D, des
the ostensibly 2D nature of the trellis layer, with dispersi
in the oxygen and copper bands~below the Fermi energy!
occurring only in the ladder direction (b axis!. Interestingly,
the dispersion in the lowest binding energy part of the oc
pied Cu Hubbard band showed a lattice periodicity of 2b,
which may reflect dynamical short-range AF and/or cryst
lographic ordering in the ladder direction. Temperatu
dependent ARPES measurements on Na0.96V2O5 by the
same group from 120 to 300 K showed evidence for
predicted spin-charge separation in 1D magnetic system35

A phase transition occurs in NaV2O5 at a critical tempera-
ture Tc'33–36 K, below which the spin susceptibilityxspin

→0 asT→0 and a lattice distortion occurs.33,36,37The lattice
distortion results in a supercell with lattice parametersa
32b34c.36 Therefore the transition was initially characte
ized as a possible spin-Peierls transition, which by definit
is driven by magnetoelastic~spin-phonon! coupling, and in
which there is no change in the charge/spin distribut
within the rungs/V-O-V molecular clusters. The superstru
ture in thea andc directions, perpendicular to the V chain
which run in theb direction, would be a result of the phasin
of the distortions in adjacent chains/ladders. In this interp
tation, and within the adiabatic approximation~discussed
later!, one would expect that the magnetic properties ab
Tc should be close to those of theS51/2 Heisenberg uniform
chain, and of anS51/2 alternating-exchange Heisenbe
chain belowTc .

It has become clear, however, that the phase transi
occurring atTc in NaV2O5 is accompanied by charge orde
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ing, in contrast to a classic spin-Peierls transition. Therefo
the magnetoelastic coupling may only play a secondary r
and the spin gap may be a secondary order paramete
particular, 51V NMR experiments showed the presence
~inequivalent! V14 and V15 below Tc , whereas only one V
species was present aboveTc .22 This result is consistent with
the solution of the superstructure belowTc by Lüdecke and
co-workers19 using synchrotron x-ray diffraction. Lu¨decke
et al. found that there are modulated and unmodulated ch
of V atoms belowTc, tentatively assigned to magnetic an
nonmagnetic chains. One interpretation of the results is
the d1 V14 cations segregate into alternate two-leg ladd
which are isolated from each other within the V2O3 trellis
layer by intervening two-leg ladders containing only no
magnetic V15.19 The anomalous strong increase in the th
mal conductivity belowTc may also be due to charg
ordering.38 From ultrasonic measurements of shear and l
gitudinal elastic constants, Schwenk and co-workers h
suggested that the charge ordering is of the zig-zag t
within each ladder.39 In each of these scenarios for char
ordering, static charge disproportionation occurs such
1/2 of the V atoms have oxidation state14 and the other half
15, consistent with the average formal oxidation state
14.5 in the compound.

Köppenet al.40 have concluded from thermal expansio
measurements that the phase transition atTc actually consists
intrinsically of two closely spaced phase transitions se
rated by&1 K, where the upper transition is thermodynam
cally of second order whereas the lower one is first ord
However, a double transition was not found in their spec
heat measurements on the same crystal, which they attrib
to the 50 mK temperature oscillations required by their
measurement technique which were thought to broaden
two transitions and render them indistinguishable.

The nature of the possible charge ordering pattern
been studied theoretically by several groups. Seo
Fukuyama41 predicted~at T50) a static zig-zag chain o
V14 ions on each two-leg ladder, with an interpenetrat
zig-zag chain of V15 ions. They proposed that pairs of V14

spins, one each on adjacent ladders, would form spin
glets, resulting in the observed spin gap. A similar zig-z
charge configuration in each ladder was inferred by Mos
voy and Khomskii,42 with subsequent experimental suppo
by Smirnovet al.,43 and by Gros and Valenti.44 Motivated in
part by the above thermal expansion measurement resul
Köppen et al.,40 Thalmeier and Fulde45 proposed that the
charge ordering transition would result in one linear chain
V14 and one linear chain of V15 on each two-leg ladder
thereby then allowing a conventional spin-Peierls transit
to occur at a slightly lower temperature, resulting in a dou
transition as reported by Ko¨ppen et al.40 A similar picture
was put forward by Nishimoto and Ohta.23 Thalmeier and
Yaresko46 have extensively discussed the linear-chain a
zig-zag scenarios for charge ordering, and in addition h
considered the alternating two-leg ladder charge orde
pattern of the type suggested by Lu¨deckeet al.19 They point
out that in both the linear and zig-zag patterns, a second
spin-Peierls dimerization or spin exchange anisotropy~in
spin space! may be necessary to give a spin gap, whereas
two-leg ladder ordering has a spin gap even with no lat
distortion. Thalmeier and Yaresko describe the character
e,
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signatures of each of the charge-ordered models to be c
pared with experimental inelastic neutron scattering m
surements. Riera and Poilblanc have discussed the influ
of electron-phonon coupling on the derived charge- and s
order phase diagrams.47

We have carried outx(T) measurements from 2 to 750 K
on single crystals of NaV2O5 along the ladder (b axis! di-
rection to further characterize and clarify the nature of
magnetic interactions and ordering below and aboveTc . We
find that the magnetic properties aboveTc are not accurately
described by theS51/2 Heisenberg uniform chain predictio
with a T-independentJ, although a mean-field ferromagnet
interchain coupling can explain these data. Using our th
retical x(a,T) fit function for the AF alternating-exchang
chain below Tc , we find that d(0)[(12a)/(11a)
50.034(6) and that the zero-temperature spin-gap
NaV2O5 is D(0)/kB5103(2) K. Thed(T) andD(T) below
Tc are extracted. A spin pseudogap is found to occur ab
Tc with a rather large magnitude. From our specific he
measurements on two crystals, we find that the magn
specific heat at low temperaturesT&15 K is too small to be
resolved experimentally, and that the spin entropy atTc is
too small to account for the entropy of the transition.
quantitative analysis shows that at least 77% of the entr
change atTc due to the transition~s! and associated orde
parameter fluctuations must arise from the lattice and
charge degrees of freedom and less than 23% from the
degrees of freedom.

C. Plan of the paper

The rest of the paper is organized as follows. Our notat
for the Heisenberg spin Hamiltonian and for the reduced s
ceptibility, temperature and spin gap are given immediat
in Sec. II. Some general features of the high-tempera
series expansion~HTSE! for x(T) and C(T) of S51/2
Heisenberg spin lattices and the low-temperature limits
these quantities for one-dimensional~1D! systems with a
spin gap are then given. We then specialize to theS51/2 AF
alternating-exchange Heisenberg chain in Sec. II C, wh
we discuss the HTSEs, the spin gap and the one-mag
dispersion relationsE(D,k). In the latter subsection, we de
rive a one-parameter approximation forE(D,k) which cor-
rectly extrapolates to thea→0 limit and which we will need
in order to later fit the TMRGx(T) data to extractD(a). We
also show that the expressions for the low-T limits of both
x(T) andC(T) depend only on the spin gap~in addition to
T). In Sec. III, we discuss overall features of thex(T) and
C(T) for the uniform chain and then focus on the low-T
behavior. The explicit forms of the logarithmic correction
previously found forx(T) are first discussed. We show th
a low-T expansion of the theory of Lukyanov6 gives the
same first two corrections, and in addition gives the n
higher-order term. We then compare the Bethe ansatzx(T)
results5 directly with the theory with no adjustable param
eters or approximations. Logarithmic corrections are a
found to be important to accurately describe the Bethe an
data5 for C(T). We show that the lowest order correction
not sufficient to fit the data, and we derive the next tw
higher-order corrections by fitting the data at very low te
peratures.
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9562 PRB 61D. C. JOHNSTONet al.
General features of our scheme to fit numericalx(T) data
are described in Sec. IV A, followed by a fit to the exa
x(T) for the antiferromagnetic Heisenberg dimer and t
fits to the numericalx(T) data5 for the uniform chain. Due to
the special requirements of, and constraints on, the t
dimensional fit function necessary to accurately fitx(a,T)
data for the alternating-exchange chain over large range
both a and T, a separate section, Sec. IV E, is devoted
formulating and discussing this fit function. Using a fit fun
tion similar to that used to fit numericalx(T) data, in the
next section an extremely accurate and precise fit is obta
over 25 decades in temperature to the Bethe ansatzC(T)
data.5 Our QMC and TMRGx(T) data for the alternating
exchange chain are presented and fitted in Sec. V, usin
end-point parameters those determined for the uniform ch
and the dimer, respectively. The spin gapD(a) is extracted
for 0.8<a<0.995 by fitting the TMRGx(a,T) data at low
temperatures in Sec. VI. Section VII contains a compari
of our numerical results with previous work. TheD(a) val-
ues are compared with previous numerical results and w
the theoretical prediction for the asymptotic critical behav
in Sec. VII A. Our x(T) calculations are shown in Sec
VII B to be in good agreement with the previous numeric
results of Barnes and Riera9 for 0.2<a<0.8. The numerical
calculations of Bulaevskii7 have been extensively used in th
past by experimentalists to fit thex(T) of spin-Peierls com-
pounds, but up to now a detailed analysis of the predicti
of this theory has not been given. We present such an an
sis in Sec. VII C and compare our results with these pred
tions.

We begin the experimental part of the paper by study
the anisotropic magnetic susceptibility of a high qual
NaV2O5 single crystal in Sec. VIII A, where literature da
on the anisotropy of theg factor and Van Vleck susceptibil
ity are compared with our results. In the following sectio
we illustrate the utility and application of many of the the
retical results derived and presented previously in the pa
In Sec. VIII B we present experimentalx(T) data for single
crystals of NaV2O5 and model these data in detail in Se
VIII C using our QMC and TMRGx(T) data fit function for
the AF alternating-exchange Heisenberg chain. We sh
that qualitatively and quantitatively new information abo
the temperature dependences of the spin dimerization pa
eter and spin gap belowTc can be obtained from our mod
eling. This analysis also shows that spin dimerization fl
tuations and a spin pseudogap are present aboveTc , and we
quantitatively determine their magnitudes. Our specific h
measurements of NaV2O5 single crystals and our extensiv
modeling of these data are presented in Sec. VIII D, wh
we obtain quantitative limits on the relative contributions
the lattice, spin and charge degrees of freedom to the cha
in the entropy due to the transition atTc and to associated
order parameter fluctuations. A summary and conclud
discussion are given in Sec. IX.

II. THEORY

In this paper we will only be concerned with the spinS
51/2 antiferromagnetic~AF! Heisenberg Hamiltonian
t
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H5(̂
i j &

Ji j Si•Sj , ~1!

where Ji j is the Heisenberg exchange interaction betwe
spinsSi andSj and the sum is over unique exchange bon
A Ji j .0 corresponds to AF coupling, whereasJi j ,0 refers
to ferromagnetic coupling. Note that magnetic nearest ne
bors Sj of a given spinSi in Eq. ~1! need not be crystallo-
graphic nearest neighbors. A magnetic nearest neighbor
given spin is any other spin with which the given spin has
exchange interaction.

For notational convenience, we define the reduced s
susceptibilitiesx* andx* , reduced temperaturest and t̄ and
reduced spin gapsD* andD* as

x* [
xJmax

Ng2mB
2

, x* [
xJ

Ng2mB
2

, ~2!

t[
kBT

Jmax
, t̄[

kBT

J
, ~3!

D* [
D

Jmax
, D* [

D

J
, ~4!

whereJmax and J are, respectively, the largest and avera
exchange constants in the system,N is the number of spins
g is the spectroscopic splitting factor appropriate to the
rection of the applied magnetic field relative to the cryst
lographic axes, andmB is the Bohr magneton.

A. High-temperature series expansions for the spin
susceptibility and magnetic specific heat

For any Heisenberg spin lattice~in any dimension! in
which the spins are magnetically equivalent, i.e., where e
spin has identical magnetic coordination spheres, the
three to four terms of the exact quantum mechanical h
temperature series expansion ofx* (t) have the same form
with a particularly simple form if the series is inverted.4 For
S51/2, one obtains4,48,49

1

4x* t
5 (

n50

`
dn

tn , ~5a!

d051, d15
1

4Jmax (j
Ji j , d25

1

8Jmax2 (
j

Ji j
2 ,

~5b!

d35
1

24Jmax3 (
j

Ji j
3 . ~5c!

Equation~5b! is universal, but Eq.~5c! holds only for spin
lattices which are not geometrically frustrated for AF orde
ing and in which the magnetic and crystallographic near
neighbors of a given spin are the same. Geometrically fr
trated lattices typically contain closed triangular exchan
paths within the spin lattice structure, such as in the
triangular lattice or in the 3DB sublattices of the fccAB2O4
oxide normal-spinel andA2B2O7 oxide pyrochlore struc-
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tures. The uniform and alternating-exchange chains con
ered in this paper are not geometrically frustrated, and
magnetic and crystallographic nearest neighbors of a g
spin are the same. It has been found4 that the terms to
O(1/t3) on the right-hand-side of Eq.~5a! are sufficient to
quite accurately describe the susceptibilities of a variety
nonfrustrated zero-, one-, and two-dimensionalS51/2 AF
Heisenberg spin lattices to surprisingly low temperaturet
&1. Higher orderdn /tn terms withn>4 are dependent on
the structure and dimensionality of the spin lattice. T
Weiss temperatureu in the Curie-Weiss lawx(T)5C/(T
2u) is given by the universal expressionu52d1Jmax/kB .

Because the spin susceptibility and the magnetic contr
tion C(T) to the specific heat can both be expressed, via
fluctuation-dissipation theorem and the Heisenberg Ham
tonian, respectively, in terms of the spin-spin correlat
functions, there is a close relationship between these
quantities.50 In particular, just as there is a universal expre
sion for the first three to four HTSE terms forx(T) of a
Heisenberg spin lattice as discussed above, a universa
pression for the first one to two HTSE terms forC(T) of
such a spin lattice exists and is given forS51/2 by4,48,49

C~ t !

NkB
5

3

32
F (

j
Ji j

2

t2Jmax2
1

(
j

Ji j
3

2t3Jmax3
1OS 1

t4D G . ~6!

The sums are over all magnetic nearest-neighbor bond
any given spinSi . The first term is universal but the secon
term holds only for geometrically nonfrustrated spin lattic
in which the crystallographic and magnetic neare
neighbors of any given spin are the same. Higher order te
all depend on the structure and dimensionality of the s
lattice.

A common misconception is thatC50 if the magnetic
susceptibility of a local-moment system obeys the Cu
Weiss law. This is only true classically. For Heisenberg s
lattices, one can easily show that the Weiss temperatureu in
the Curie-Weiss law arises from the first HTSE te
@O(1/t)# of the magnetic nearest-neighbor spin-spin corre
tion function, which is the same quantity that the first HTS
term ofC(t) arises from.4 Thus, e.g., forS51/2 Heisenberg
spin lattices at temperaturest@1 at which the Curie-Weiss
law holds, the magnetic specific heat is given by the univ
sal first term of Eq.~6!.

B. Low-temperature limit of the spin susceptibility
and specific heat of 1D systems with a spin gap

Magnetic susceptibility. For one-dimensional~1D! S
51/2 Heisenberg spin systems with a spin gap such as
S51/2 two-leg ladder~and the alternating-exchange chain!,
Troyer, Tsunetsugu, and Wu¨rtz51 derived a general expres
sion forx* (t) which approximately takes into account kin
matic magnon interactions, given by

x* ~ t !5
1

t

z~ t !

113z~ t !
, ~7a!

z~ t !5
1

pE0

p

e2«k /td~ka!, ~7b!
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where «k[E(k)/Jmax, E(k) is the nondegenerate one
magnon~triplet! dispersion relation~the Zeeman degenerac
is already accounted for! anda is the ~average! distance be-
tween spins. This expression is exact in both the low- a
high-temperature limits. For the isolated dimer, for whi
«k5D* 51, Eq. ~7a! is exact at all temperatures. Insertin
z(t)5e21/t for the dimer into Eq.~7a! yields the correct
result

x* ~ t !5
e21/t

t

1

113e21/t
~dimer!, ~8a!

x* ~ t→0!5
e21/t

t
. ~8b!

The x* (t) in Eq. ~8a! for the antiferromagnetic Heisenber
dimer is plotted in Fig. 1; the fit shown in the figure will b
presented and discussed later in Sec. IV B.

At low temperatures t!D* and t! one-magnon
bandwidth/Jmax, and for a dispersion relation with a para
bolic dependence on wave vectork near the band minimum

«k[
E~k!

Jmax
5D* 1c* ~ka!2, ~9!

one can replace«k in Eq. ~7b! by the approximation~9! and
replace the upper limit of the integral in Eq.~7b! by `,

FIG. 1. ~a! Magnetic susceptibilityx (s) versus temperatureT
for the spinS51/2 Heisenberg dimer with antiferromagnetic e
change constantJ. The fit from Sec. IV B is shown by the solid
curve.~b! Semilog plot of the fit deviation vsT. The lines connect-
ing the points in~b! are guides to the eye.



he

er
o

-
m

-

gn

d
w
n
o
n

tic
on
in
t

in

at

ion
erls
the
an

r
ller
on

-

e

9564 PRB 61D. C. JOHNSTONet al.
yielding z(t)5e2D* /tAt/(2Apc* ). Substituting this result
into Eq. ~7a! gives the low-t limit 51

x* ~ t→0!5
A

tg e2D* /t, ~10a!

A5
1

2Apc*
, g5

1

2
. ~10b!

This result is correct for any 1DS51/2 Heisenberg spin
system with a spin gap and with a nondegenerate~excluding
Zeeman degeneracy! lowest-lying excited triplet magnon
band which is parabolic at the band minimum. On the ot
hand, the low-temperature limit ofx* (t) for the isolated
dimer in Eq.~8b! is of the same form as Eq.~10a!, but with
g51. Thus, for 1D systems consisting essentially of dim
which are weakly coupled to each other, a crossover fr
g51 to g51/2 is expected with decreasingt.

The parametersA andg can be determined if very accu
ratex* (t) andD* data are available. Taking the logarith
of Eq. ~10a! yields the low-t prediction

ln@x* ~ t !#1
D*

t
5 ln A2g ln t, ~11a!

so plotting the left-hand-side vs lnt allows these two param
eters to be determined. Alternatively, assumingg51/2, one
can obtain estimates ofA andD* using Eq.~10a!, according
to

2 ln~x* At !52 ln A1
D*

t
~11b!

and/or

2
] ln~x* At !

]~1/t !
5D* . ~11c!

Specific heat. The low-t limit of the magnetic contribution
C(T) to the specific heat for the same model51 is calculated
to be

C~ t→0!

NkB
5

3

2 S D*

pc* D 1/2S D*

t D 3/2F11
t

D*
1

3

4 S t

D* D 2Ge2D* /t.

~12!

Note that, in addition to the ratiot/D* 5kBT/D of the
thermal energy to the spin gap, the magnitude ofx* in Eqs.
~10! is determined by the actual value of the curvaturec* at
the triplet one-magnon band minimum, whereas the ma
tude ofC in Eq. ~12! depends only on theratio of c* to D* .
These formulas have been applied in the literature to mo
experimental data for alternating-exchange chain and t
leg spin ladder compounds. However, with one exceptio52

to our knowledge, these modeling studies have not rec
nized that the prefactor parameter and the spin gap are
independently adjustable parameters. For a given spin lat
they are in fact uniquely related to each other. Their relati
ship for theS51/2 two-leg Heisenberg ladder was studied
Ref. 52. For the alternating-exchange chain, we estimate
relationship betweenc* andD* below in Sec. II C 3.
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C. Alternating-exchange chain

The S51/2 AF alternating-exchange Heisenberg cha
Hamiltonian is written in three equivalent ways as53

H5(
i

J1SW 2i 21•SW 2i1J2SW 2i•SW 2i 11 ~13a!

5(
i

J1SW 2i 21•SW 2i1aJ1SW 2i•SW 2i 11 ~13b!

5(
i

J~11d!SW 2i 21•SW 2i1J~12d!SW 2i•SW 2i 11 ,

~13c!

where

J15J~11d!5
2J

11a
, ~14a!

a5
J2

J1
5

12d

11d
, ~14b!

d5
J1

J
215

J12J2

2J
5

12a

11a
, ~14c!

J5
J11J2

2
5J1

11a

2
, ~14d!

with AF couplingsJ1>J2>0, 0<(a, d)<1. The uniform
undimerized chain corresponds toa51, d50, J15J25J.
The form of the Hamiltonian in Eq.~13c! is most appropriate
for chains showing a second-order dimerization transition
Tc with decreasingT. If the exchange modulationd!1 (a
;1), the ~average! J below Tc can be identified with the
exchange coupling in the high-T undimerized state.

In spin-Peierls systems, the spin-phonon interact
causes a lattice dimerization to occur below the spin-Pei
transition temperature, together with a spin-gap due to
formation of spin singlets on the dimers. The Hamiltoni
can be mapped onto the spin Hamiltonian~13! ~with renor-
malized exchange constants! only in the adiabatic paramete
regime, in which the relevant phonon energy is much sma
thanJ. If such a mapping cannot be made, dynamical phon
effects~quantum mechanical fluctuations! become important
and thex(T) can be significantly different from that pre
dicted from Hamiltonian~13!.54–56 This issue will be dis-
cussed further when modeling thex(T) data for NaV2O5 in
Sec. VIII B.

1. High-temperature series expansions

Magnetic susceptibility. For the alternating-exchang
chain, according to our definition one hasJmax5J1. Then
using the definition fora in Eq. ~14b!, thedn HTSE coeffi-
cients in Eqs.~5b! and ~5c! become

d051, d15
11a

4
, d25

11a2

8
, d35

11a3

24
.

~15!
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One can change variables froma andJ1 in x* (a,t) to d and
J in x* (d, t̄ ) using Eqs.~14! which give

t5
t̄

11d
, ~16a!

x* ~d, t̄ !5
1

11d
x* S 12d

11d
,

t̄

11d
D . ~16b!

We write the resulting HTSE for the inverse ofx* (d, t̄ ) as

1

4x* t̄
5 (

n50

` d̄n

t̄ n
, ~17a!

where we find

d̄051, d̄15
1

2
, d̄25

11d2

4
, d̄35

113d2

12
.

~17b!

An important feature of this HTSE ofx* (d, t̄ ) is that it is an
even~analytic! function ofd for any finite temperature. This
constraint must be true in general and not just for the te
listed,5 becausex* (d, t̄ ) cannot depend on the sign ofd
5(J12J2)/(2J): the Hamiltonian in Eq.~13c! is invariant
upon such a sign change. Physically, a negatived would
simply correspond to relabeling allSi→Si 11, which cannot
change the physical properties. We will use this constra
thatx* (d, t̄ ) must be an even function ofd to help formulate
our fitting function~after a change back in variables! for our
QMC and TMRGx* (a,t) calculations for the alternating
exchange chain. This constraint is important because it
lows a fit function forx* (a,t) to be formulated which is
accurate fora&1 (d!1), a parameter regime relevant
compounds exhibiting second-order spin-dimerization tra
tions with decreasing temperature.

Magnetic specific heat. UsingJmax5J1 anda5J2 /J1, the
general HTSE expression in Eq.~6! yields the two lowest-
order HTSE terms for the magnetic specific heatC(T) of the
S51/2 AF alternating-exchange Heisenberg chain as

C~ t !

NkB
5

3

32F11a2

t2 1
11a3

2t3 1OS 1

t4D G . ~18!

2. Spin gap

The spin gapD* (a) of the alternating-exchange cha
was determined to high (<1%) accuracy for 0<a<0.9, in
a increments of 0.1, using multiprecision methods by B
nes, Riera, and Tennant~BRT!.53 They found that their cal-
culations could be parametrized well by

D* ~a![
D~a!

J1
'~12a!3/4~11a!1/4, ~19a!

D* ~d![
D~d!

J
'2d3/4. ~19b!

The sameD* (d) was found in numerical calculations b
Ladavacet al.57 for 0.01<d<1, whereas calculations fo
0.03<d<0.06 by Augieret al.58 yielded somewhat smalle
s

t

l-

i-

-

values ofD* than predicted by Eq.~19b!. The asymptotic
critical behavior ofD* as the uniform limit is approache
(a→1, d→0) has been given5,59–61as

D* ~d!}
d2/3

u ln du1/2
; ~20!

thus the parametrization in Eq.~19b! evidently indicates that
the fitted data do not reside within the asymptotic critic
regime. Alternatively, Barnes, Riera, and Tennant53 sug-
gested that Eq.~20! may not be the correct form for th
asymptotic critical behavior. On the other hand, Uh
et al.62 fitted their T50 density matrix renormalization
group ~DMRG! calculations ofD* (d) for 0.004<d<0.1 to
a power-law behavior without the log correction and o
tainedD* '1.57d0.65. We will further discuss the above spi
gap calculation results later in Sec. VII A after deriving o
own D* (a) values from our TMRGx* (a,t) data in Sec.
VI.

3. One-magnon dispersion relations

Barnes, Riera, and Tennant have computed the dimer
ries expansion of the dispersion relation«(a,k)
[E(a,k)/J1 for the one-magnon (S51) energyE(a,k) vs
wave vectork along the chain for the lowest-lying one
magnon band, up to fifth order ina,53 which we write as

«~a,k!5 (
n50

`

an~a! cos~2nka!, ~21!

wherea is the~average! spin-spin distance, which is 1/2 th
lattice repeat distance along the chain in the dimerized st
Plots of «(a,k) for a50, 0.2, 0.4, 0.6, and 0.8 up to fifth
order in a, as given in Fig. 4 of Ref. 53, are shown as t
dashed curves in Fig. 2. The curves are symmetric ab
ka5p/2, so the same spin gapD* (a)5(n50

` an(a) occurs
at ka50 and p. This fifth-order approximation yields

FIG. 2. Dispersion relationsE(a,k) for the S51/2 antiferro-
magnetic alternating-exchange Heisenberg chain. The da
curves for alternation parametersa50, 0.2, 0.4, 0.6, and 0.8 are th
dimer series expansion results of Barnes, Riera, and Tennant~Ref.
53!, the solid curves for thesea values are from our expressio
given in the figure and in Eqs.~23!, and the solid curve fora51 is
the known exact result for the uniform chain, which by construct
is the same for the expression in the figure at thisa value.
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D* (a) values for a<0.9 in rather close agreement wit
BRTs’ results discussed in the previous section. For a di
series expansion we expect the average energy of the
magnon band states to be nearly independent ofa, i.e.,

1

pE0

p

«~a,ka! d~ka!51. ~22!

Indeed, upon inserting BRTs’ fifth order expansion coe
cients into Eq.~21! and the result into Eq.~22!, we find that
this sum rule is satisfied to within 1% for 0<a<1.

Also shown as a solid curve in Fig. 2 is the exact res
«(k)5(p/2)usin(ka)u for the uniform chain (a51).63 This
«(k) has a cusp with infinite curvature~at ka50 and p)
which cannot be accurately approximated by a Fourier se
with a small number of terms. This singular behavior is e
dently closely related to the critical behavior ofD* (a→1)
discussed above. In order to later model our TMRGx* (a,t)
data close to, but not in, the low-t limit, we will need an
expression for«(a,k) which is correct in the limita→1 and
which also reproduces reasonably well the«(a,k) of BRT.
We found that the simple one-parameter (D* ) form sug-
gested earlier by one of us in the context of theS51/2 two-
leg ladder52

«~D* ,k!5@D*
2
1 f 2~D* !sin2~ka!#1/2, ~23a!

is satisfactory in these regards for the AF alternatin
exchange chain over the entire range 0<D* <1. The func-
tion f (D* ) is determined here by the sum rule~22!, which
yields the condition

EF2
f 2~D* !

D*
2 G5

p

2D*
, ~23b!

where E(x) is the complete elliptic integral of the secon
kind. From Eq.~23b!, f varies nonlinearly withD* from
f (D* 50)5p/2 to f (D* 51)50, as shown in Fig. 3. From
an independently determined dependence ofD* on a as in
Eq. ~19a!, one can then determinef (a) as also shown in Fig
3. Using the fifth-orderD* (a) values of BRT in Fig. 2, the
resulting dispersion relations~23! for a50, 0.2, 0.4, 0.6, and

FIG. 3. The functionf (D* ) in the expression in the figure an
in Eqs. ~23! for the one-magnon dispersion relation of theS51/2
antiferromagnetic alternating-exchange Heisenberg chain, w
D* [D/J1 is the spin gap. The dependencef (a) is also plotted for
the assumed form ofD* (a) shown.
er
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lt

es
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0.8 were calculated and are shown as the solid curves in
2, where they are seen to be in close agreement with
respective dashed curves of BRT. An important differen
for largea, however, is that the«(D* ,k) in Eqs.~23! prop-
erly reduces by construction to the exact«(a,k) for a→1,
whereas the one in Eq.~21! with a finite number of terms
does not.

Close to the one-magnon band minimum, the square
and the sine function in the dispersion relation in Eq.~23a!
can be expanded, yielding

«~D* ,k→0!'D* 1
1

2

f 2~D* !

D* ~ka!2. ~24!

A comparison of Eqs.~24! and~9! shows that the paramete
c* in the formulas forx* (t→0) @Eqs. ~10!# and C(t→0)
@Eq. ~12!# is a unique function ofD* which in our approxi-
mation is given by

c* ~D* !5
1

2

f 2~D* !

D*
, ~25!

with f 2(D* ) given by Eq.~23b!. Thus bothx* (t→0) and
C(t→0) for the alternating-exchange chain only depend
the single parameterD* ~in addition to t). Explicitly, we
obtain

x* ~ t→0!5
1

A2p f ~D* !
S D*

t D 1/2

e2D* /t. ~26!

As might have been anticipated, the only thermodynam
variable is the ratiot/D* 5kBT/D of the thermal energy to
the spin gap. The numerical prefactor depends explic
~only! on the reduced spin gapD* [D/J1. Similarly, the
magnetic specific heat is obtained as

C~ t→0!

NkB
5

3

A2p

D*

f ~D* ! S D*

t D 3/2

3F11
t

D*
1

3

4 S t

D* D 2Ge2D* /t, ~27!

where again the same characteristics are present as jus
cussed forx* (t). The variations of the prefactors withD*
for x* (t) andC(t) can both be ascertained from the plot
f (D* ) in Fig. 3. In particular, whena;1 (d!1) for which
D* !1, f is nearly a constant. For our and our readers’ co
venience when modeling materials showing small spin ga
we have fitted our numericalf (D* ) calculations for 0<D*
<0.4 by a third-order polynomial to within 2 parts in 104,
given by

f ~D* !5
p

2
20.034289D* 21.18953D*

2
10.40030D*

3
.

~28!

By a change in variables to (J,d) and using theD* (a) in
Eq. ~19!,53 we obtain the following forms which are mor
useful for modeling materials with small spin gaps, esp
cially those showing second-order spin dimerization tran
tions with decreasingT:

re
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x* ~ t̄→0!5
1

~11d!A2p f ~D* !
S D*

t̄
D 1/2

e2D* / t̄ .

~29a!

C̄~ t→0!

NkB

5
3

~11d!A2p

D*

f̄ ~D* !
S D*

t̄
D 3/2

3F11
t̄

D*
1

3

4 S t̄

D*
D 2Ge2D* / t̄ , ~29b!

f̄ ~D* !5
p

2
20.033933D* 21.19607D*

2
10.92430D*

3
.

~29c!

Note that in these formulasD* /t5D* / t̄ 5D/(kBT).

III. THEORY: SÄ1Õ2 UNIFORM HEISENBERG CHAIN

A. Magnetic spin susceptibility

The uniformS51/2 chain is one limit of the alternating
exchange chain withJi j [J, a51, d50, and with no spin
gap @the x* (t→0) andC(t→0)/t are finite#. The spin sus-
ceptibility was calculated accurately by Eggert, Affleck, a
Takahashi in 1994,3 and recently refined by Klu¨mper5 as
shown in Fig. 4~a! where only the calculations up tot52 are
shown. An expanded plot of the data fort<0.02, including
the exact value 1/p2 at t50, is shown in Fig. 4~b!, along
with a fit ~Fit 2! to the data to be derived and discussed
Sec. IV C. The recent calculations of Klu¨mper and Johnston
in Ref. 5 have an absolute accuracy estimated to be'1
31029 and show a broad maximum at a temperatureTmax

with a valuexmax. By fitting data points near the maximum
by up to 6th order polynomials, we determined these num
cal values to be given by

Tmax50.640 851 0~4!J/kB , ~30a!

xmaxJ

Ng2mB
2

50.146 926 279~1!, ~30b!

xmaxTmax50.094 157 9~1!
Ng2mB

2

kB
. ~30c!

These values are consistent within the errors with th
found by Eggertet al.,3 but are much more accurate. For o
mole of spins, settingN5NA ~Avogadro’s number! in Eq.
~30c! yields

xmaxTmax50.035 322 9~3!g2
cm3K

mol
. ~31!

Note that the productxmaxTmax in Eqs. ~30c! and ~31! is
independent ofJ, and hence is a good initial test of wheth
the S51/2 AF uniform Heisenberg chain model might b
applicable to a particular compound.
i-

e

1. High-temperature series expansions

The coefficientscn of the HTSE forx* (t),

4x* t5 (
n50

`
cn

tn , ~32a!

are given up toO(1/t7) by64

c051, c152
1

2
, c250, c35

1

24
, c45

5

384
,

c552
7

1280
, c652

133

30720
, c75

1

4032
. ~32b!

Inverting the series, we obtain the correspondingdn coeffi-
cients in Eq.~5a! as

d051, d15
1

2
, d25

1

4
, d35

1

12
, d45

1

128
,

d552
29

3840
, d652

317

92160
, d75

11

71680
. ~33!

The dn coefficients withn50, 1, 2, and 3 are of course i
agreement with Eq.~15! for a51.

FIG. 4. ~a! Magnetic susceptibilityx versus temperatureT for
the spin S51/2 nearest-neighbor antiferromagnetic Heisenb
chain ~Ref. 5! (d). ~b! Expanded plot of the data in~a! for 0<t
<0.02, together with a fit~Fit 2, solid curve! obtained in Sec. IV C
to the data of Klu¨mper and Johnston~Ref. 5!. The fit is not shown
in ~a! because on the scale of this figure the fit is indistinguisha
from the data.
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2. Logarithmic corrections at low temperatures

At low temperatures a simple expansion of thermod
namic properties in, for instance, the variablet is not pos-
sible. Such a nonanalyticity int can be viewed as due to th
strong correlation of the quasiparticles, i.e., the elemen
excitations of the system are not strictly free; they sh
rather nontrivial scattering processes. Spinons with low
ergies e1 and e2 have a scattering phasef(e1 ,e2).f0
1const/u log(e1e2)u. From this property it is clear65 that an
expansion in the single variablet is not possible, but has to
be supplemented by a term 1/log(t). Although being very
intuitive, this physical picture on the basis of scattering p
cesses of spinons has not played any important role in
investigation of logarithmic corrections until recently.5

Logarithmic dependencies of physical quantities ha
been known for the spin-1/2 Heisenberg chain for a rat
long time. Usually, a quantum chain with critical couplin
leads to critical correlations only in the thermodynamic lim
1/L50 and atT50, whereL is the length of the chain. If
one of these conditions is not met the physical proper
receive nonanalytic contributions in terms of 1/L or T. From
the renormalization group point of view the existence
logarithmic corrections is reflected by the perturbation of
~critical! fixed point Hamiltonian by some marginal operato
Such operators usually exist only for isotropic systems.

The investigation of the size dependence of energy le
of critical quantum chains was started more than a dec
ago. For the isotropic spin-1/2 Heisenberg chain, expans
in 1/L and additional logarithmic corrections (1/L logL etc.!
were found in lattice approaches~Bethe ansatz66–68! as well
as in field theory@RG study of the Wess-Zumino-Witte
~WZW! model with topological termk51 ~Refs. 61,69,70!#.

Many of these earlier results are still relevant for the
sues discussed in this section due to an equivalence of m
particle systems atT50, 1/L.0 ~ground-state properties o
finite chains! and those atT.0, 1/L50 ~thermodynamics of
the bulk!. This leads to asymptotic series whereT and 1/L
play very similar roles. To our knowledge the first explic
report on log(T) corrections in the magnetic susceptibili
resulting in an infinite slope atT50 was given in Ref. 3.
Including higher order terms, the asymptotic expans
x lt* (t) for x* (t) is3,5,65,71

x lt* ~ t !5
1

p2 F11
1

2L 2
ln~L1 1

2 !

~2L!2
1•••G , ~34a!

5
1

p2 F11
1

2L 2
ln L

~2L!2
2

1

~2L!3
1•••G ,

~34b!

L[ ln~ t0 /t !, ~34c!

wheret0 is a nonuniversal~undetermined! parameter. In Ref.
3 the field theoretical prediction on the basis of the WZ
model was compared with the results of thermodynamic
the ansatz calculations and showed convincing agreeme
an intermediate temperature regime. Using up to the
logarithmic correction term in Eq.~34a!, Eggert, Affleck,
and Takahashi estimatedt0'7.7,3 so at low temperaturest
&0.01 the parameterL@1.
-
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A general feature of field theoretical and lattice a
proaches is their restriction to ‘‘low’’ and ‘‘high’’ tempera
tures, respectively. Field theoretical studies suffer at h
temperatures from the neglect of~infinitely many! irrelevant
operators. Lattice studies show convergence problems at
temperatures as increasingly larger systems have to be
ied in order to avoid finite-size effects. In addition, the co
parison of field theory and lattice results can only verify
falsify the universal aspects of an asymptotic expansi
Non-universal quantities liket0 which derive from some
coupling constant of a marginal or irrelevant operator~unde-
termined within the field theory! can at best be fitted as don
in Ref. 3.

The latter problem of determining the coupling consta
in an effective field theory was solved by Lukyanov6 who
used a bosonic representation of the Heisenberg chain.
coupling constants were fixed by a comparison of the s
ceptibility datax(T50,h) obtained by him with Bethe an
satz calculations for magnetic fieldh atT50. Eventually, the
x(T.0,h50) data could be calculated without any need
a fit parameter.

Lukyanov6 obtained the following analytical low-
temperature expansion ofx* (t),

x lt,g* ~ t !5
1

p2 H 11
g

2
1

3g3

32
1O~g4!1

A3

p
t2@11O~g!#J ,

~35a!

whereg obeys the transcendental equation

1

2
ln g1

1

g
5L ~35b!

or equivalently

Ag e1/g5
t0

t
, ~35c!

with a unique value oft0 given by

t05Ap

2
eg1(1/4)'2.866 257 058, ~35d!

where g'0.577 215 665 is Euler’s constant. Lukyano
showed that hisx lt,g* (t) is in agreement with the numerica
data of Eggert, Affleck, and Takahashi3 at low temperatures
t>0.003.

In the following, we will compare high-accuracy numer
cal Bethe ansatz calculations carried out by Klu¨mper and
Johnston5 to much lower temperatures with this theory6 in
some detail because this theory is exact at low temperat
with no adjustable parameters. The calculations of Ref. 5
based on lattice studies, however without suffering from
usual shortcomings. By means of a lattice path integral r
resentation of the finite temperature Heisenberg chain
the formulation of a suitable quantum transfer matrix~both
quite analogous to the numerical TMRG calculations p
sented later in this paper! a set of numerically well-posed
expressions for the free energy was derived. In more phys
terms the method can be understood as an application o
familiar though often rather vague concept of quasipartic
to a quantitative description of the many particle syst
valid for all temperaturesT and magnetic field valuesh.5 The
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work can be understood as an evaluation of the full scat
ing theory of spinons and antispinons.5

Our iterative solution of Eq.~35b! yields the expansion

g5
1

L H 12
ln L
2L 1

~ ln L!22 ln L
~2L!2

1OF 1

~2L!3G J . ~36!

A log-log plot of g vs t obtained by numerically solving Eq
~35c! is shown in Fig. 5~solid curve!, along with its lowest-
order approximationg(t)'1/L51/ln(t0 /t) ~dashed curve!.
This approximation is 1.1% larger than the exact result at
510230, with the discrepancy increasing steadily to 5.8%
t510215 and 8.5% att51027. Substituting Eq.~36! into
~35a! gives

x lt,log* ~ t !5
1

p2 H 11
1

2L 2
ln L

~2L!2
1

~ ln L!22 ln L1~3/4!

~2L!3

1OF 1

~2L!4G1
A3

p
t2F11OS 1

2LD G J . ~37!

The first three terms are identical with those in Eq.~34b!, but
the constant term in the numerator of the fourth term is
the same as in Eq.~34b!, indicating that Eq.~34b! is not
accurate to order higher thanO@1/(2L)2#.

An important issue is the accuracy to which the log e
pansion approximationx lt,log* (t) in Eq. ~37! reproduces the
x lt,g* (t) prediction of the original Eqs.~35!. We have calcu-
lated both quantities to high accuracy and plot the differe
vs t, for the range 10230<t<0.5, in Fig. 6. Thex lt,log* (t) is
seen to increasingly diverge fromx lt,g* (t) with increasingt.

When comparing the predictions of Lukyanov’s theo
with numerical results such as obtained from the Bethe
satz, it is important to know at what temperature the l
temperature expansion in Eqs.~35! ceases to be accura
~‘‘accurate’’ must be defined! with increasing temperature
There are three aspects of this issue that need to be
dressed. The first and second aspects concern the tem
tures at which the unknownO(g4) and O(g) terms in Eq.

FIG. 5. Log-log plot vs temperatureT of the function g(T)
~solid curve! and its lowest-order approximationg(T)51/ln(T0 /T)
~dashed curve! in Lukyanov’s theory~Ref. 6! for the S51/2 anti-
ferromagnetic uniform Heisenberg chain over the temperature ra
10230<t<0.5.
r-

t

t

-

e

n-

d-
ra-

~35a! become significant, respectively; we will return
these two issues shortly. The third aspect is whether the
expansion approximationx lt,log* (t) in Eq. ~37! can be used in
this comparison. The absolute accuracy of the most rec
Bethe ansatz calculations5 is estimated to be'131029.
From Fig. 6, we see thatx lt,log* (t) approximatesx lt,g* (t) to this
degree only for temperaturest&10230 @we infer that the pre-
vious Eqs.~34! only apply to this accuracy at similarly ver
low temperatures#. Therefore, to avoid this unnecessary a
proximation as a source of error at higher temperatures,
will henceforth compare the numerical Bethe ansatz calc
tions with x lt,g* (t) calculated from Lukyanov’s original Eqs
~35!.

A comparison of the low-temperature Bethe ansatzx* (t)
calculations5 and Lukyanov’s theoreticalx lt,g* prediction is
shown in Fig. 7~a!. On the scale of this figure, the two resul
are identical. The~small! quantitative differences betwee
them are shown as the filled circles in Fig. 7~b!. The lower
error bar on each data point in Fig. 7~b! is 131027 to indi-
cate the scale. The upper error bar is the estimated un
tainty in x lt,g* arising from the presence of the unknow
O(g4) and higher-order terms in Eq.~35a!, which was set to
g4(t)/p2; the uncertainty in the t2 contribution,
;A3t2g(t)/p3, is negligible at lowt compared to this. At
the lower temperatures, the data agree extremely well w
the prediction of Lukyanov’s theory. At the highest tempe
turest*1023, higher ordertn terms also become importan
as inferred from our empirical fits~Fits 1 and 2! below to the
numerical data.

Irrespective of the uncertainties in the theoretical pred
tion at high temperatures just discussed, we can safely c
clude directly from Fig. 7~b! that the Bethe ansatzx* (t)
data5 are in agreement with the exact theory of Lukyanov6 to
within an absolute accuracy of 131026 ~relative accuracy
'10 ppm) over a temperature range spanning 18 order
magnitude fromt55310225 to t5531027. The agreement
is much better than this at the lower temperatures.

ge

FIG. 6. Log-log plot vs temperatureT of the difference between
our approximate logarithmic expansionx lt,log* of Lukyanov’s theory
~Ref. 6! and his exact predictionx lt,g* for the low-temperature limit
of the magnetic susceptibility of the spinS51/2 antiferromagnetic
uniform Heisenberg chain, for the temperature range 10230<t
<0.5.
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B. Magnetic specific heat

The magnetic specific heatC of the S51/2 AF uniform
Heisenberg chain was recently calculated to high accur
by Klümper and Johnston over the temperature rang
310225<kBT/J<5.5 The accuracy is estimated to be
310210C(t). The results forT<2J/kB are shown in Fig.
8~a!. The initial T dependence is approximately~see below!
linear, and is given exactly in thet50 limit by

C~ t→0!

NkB
5

2

3
t. ~38!

The data show a maximum with a valueCmax at a tempera-
ture TC

max. By fitting 3–7 data points in the vicinity of the
maximum by up to 6th order polynomials, these values w
found to be

kBTC
max

J
50.48 028 487~1!,

~39!

Cmax

NkB
50.3 497 121 235~2!.

FIG. 7. Semilog plots vs temperatureT at low T of ~a! numerical
Bethe ansatz magnetic susceptibility (x* ) data for theS51/2 uni-
form Heisenberg chain~Ref. 5! (d) and the predictionx lt,g* ~solid
curve! of Lukyanov’s theory~Ref. 6! and~b! the difference between
these two results (d). In ~b!, the upper error bar is the estimate
uncertainty inx lt,g* ~see text!.
cy
5

e

The electronic specific heat coefficientC(T)/T is plotted
vs temperature in Fig. 8~b!. As expected from Eq.~38!, the
data approach the value (2/3)NkB

2/J for t→0. The initial
deviation from this constant value is positive and appro
mately~see below! quadratic int. The data exhibit a smooth
maximum with a value (C/T)max at a temperatureTC/T

max, val-
ues which we determined by fitting polynomials to the da
in the vicinity of the peak to be

kBTC/T
max

J
50.30 716 996~2!,

~40!
~C/T!maxJ

NkB
2

50.8 973 651 576~5!.

The magnetic entropyS(T) is determined by integrating
the C(T)/T data in Fig. 8~b! vs T and the result, normalized
by S(T→`)5NkB ln 2, is plotted vsT in Fig. 9. This figure
allows one to estimate the maximum magnetic entropy t
can be associated with a dimerization transition or any ot
magnetic transition involvingS51/2 Heisenberg chains
which are weakly coupled to each other@assuming that the
~average! J does not change at the transition#. For example,
for NaV2O5 where kBTc /J'0.057, one can estimate from
Fig. 9 that the magnetic entropy atTc cannot exceed
0.056R ln 250.32 J/mol K, whereR is the molar gas con-

FIG. 8. ~a! Specific heatC vs temperatureT (d) for the S
51/2 antiferromagnetic uniform Heisenberg chain~Ref. 5!. ~b!
Specific heat coefficientC/T vs T from the data in~a!. The area
under the curve in~b! from T50 to T55J/kB is 99.4% of ln 2.
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stant. The reason this value is the upper limit is that magn
critical fluctuations will increase the specific heat, and he
the entropy, aboveTc and thus reduce it at~and below! Tc ,
by conservation of magnetic entropy, compared to the va
for the isolated chain at the same reduced temperatu
Similarly, theC(T) data in Fig. 8~a! allow one to estimate
the minimum lattice specific heat contributionClat(T) above
Tc if the Clat(T) has not been determined previously fro
experiments and/or theory directly.

At low temperatures, the electronic specific heat coe
cient C(T)/T becomes independent of temperature~apart
from logarithmic corrections, see below!, as does the spin
susceptibilityx* (t), just as in a metal~Fermi liquid!. There-
fore it is of interest to compute a normalized ratio of the
two quantities. For a metal, the relevant quantity is
Wilson-Sommerfeld ratio, which forS51/2 quasiparticles
reads, in the notation of this paper and withkB set to 1,

RW~ t !5
4p2x* ~ t !t

3C~ t !
. ~41!

In a degenerate free electron gas,RW51 and is independen
of t. For exchange-enhanced metals 1,RW&10, for S51/2
Kondo impurities in a metal the Wilson ratio associated w
the impurities isRW52, and for many heavy fermion meta
RW;2.72 Plotted in Fig. 10 isRW(t) for the S51/2 AF
Heisenberg chain, whereC(t)/t andx* (t) were given above
in Figs. 8~b! and 4, respectively. Fort→0, the Wilson ratio
for theS51/2 Heisenberg chain is exactly 2. With increasi
t, RW is seen to be nearly independent oft to within 610%
up to t'0.4, but the influence of the logarithmic correctio
to both x(T) and C(T) are quantitatively important. Al-
though the logarithmic corrections forx(T) and C(T) op-
pose each other in their ratio inRW(t), the logarithmic cor-
rections forx(t) win out, giving a net;10% increase in
RW(t) with increasingt at low t. At higher t, the system
crosses over to the expected local moment Heisenberg
havior whereRW}t2. Thus as far as the thermodynamics
concerned, the uniform Heisenberg chain behaves at
temperatures as expected for a Fermi liquid, apart from
influence of the logarithmic corrections. This quasi-Fer
liquid behavior arises because the elementary excitation

FIG. 9. EntropySvs temperatureT for theS51/2 antiferromag-
netic uniform Heisenberg chain, obtained from the data in Fig. 8~b!.
The entropy is normalized byS(T5`)5NkB ln 2.
ic
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low temperatures areS51/2 spinons which are fermion
with a Fermi surface~i.e., Fermi points in one dimension!.
Since the spinons carry no charge, the chain is an insula
The deviation of the Wilson ratio from unity and the log
rithmic corrections are due to spinon interactions.

1. High-temperature series expansions

The HTSE for the specific heat of a spinS AF uniform
Heisenberg chain is49

C~T!

NkB
5

x2

3t2 F11 (
n51

`
cn~x!

tn G , ~42a!

x5S~S11!, t5
kBT

J
, ~42b!

c15
1

2
, c25

1

15
~328x23x2!,

c35
1

36
~3216x24x2!,

c45
1

5040
~19221432x11123x21800x31160x4!,

c55
1

21600
~41423768x16635x212624x31480x4!.

~42c!

Specializing Eqs.~42! to S51/2 (x53/4) then gives

C~T!

NkB
5

3

16t2 F11 (
n51

`
cn

tn G , ~43a!

c15
1

2
, c25c352

5

16
, c45

7

256
, c55

917

7680
.

~43b!

The two C(T) HTSE terms of order 1/t2 and 1/t3 in Eqs.
~43! are in agreement with the general expression for the
lowest-order HTSE expansion terms forC(T) of the S

FIG. 10. The Wilson-Sommerfeld ratioRW54p2x* (t)t/
@3C(t)# between the spin susceptibility and electronic specific h
coefficient for theS51/2 AF Heisenberg chain vs reduced tempe
ture t5kBT/J. In the Wilson ratio, we have setkB51.
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9572 PRB 61D. C. JOHNSTONet al.
51/2 alternating-exchange Heisenberg chain in Eq.~18! with
alternation parametera51.

In a later section, the Bethe ansatzC(T) data5 will be
fitted to obtain a function accurately representing theC(T)
of theS51/2 AF uniform Heisenberg chain. In order that w
are not required to change our fitting equations from th
we use for fitting magnetic susceptibility data, the coe
cients for the series inverted from that in Eq.~43a! are re-
quired. We obtain

C~T!

NkB
5

3

16t2 F11 (
n51

`
dn

tn G21

, ~44a!

d152
1

2
, d25

9

16
, d352

1

8
, d45

7

128
, d55

7

1920
.

~44b!

2. Low-temperature logarithmic corrections

At first sight, from Fig. 8 there appear to be no singula
ties in the temperature dependence of the specific heat fo
S51/2 AF uniform Heisenberg chain. However, if the ele
tronic specific heat coefficientC(T)/T is examined in detail,
one sees anomalous behavior at low temperatures. Show
the top curve in Fig. 11~a! is a plot of the difference betwee
the electronic specific heat coefficient and its ze
temperature value,DC(t)/NkBt[@C(t)2(2/3)t#/(NkBt) for
0<t<0.1 @compare with Fig. 8~b!#. From this figure, there is
still nothing particularly strange about the data. Howev
upon further expanding the plot to study the range 0<t
<0.005 as shown in Fig. 11~b!, we see thatDC/NkBt is
developing an infinite slope ast→0. This is the signature o
the existence of logarithmic corrections to the specific hea
temperaturest!1, just as it was for the magnetic suscep
bility.

Klümper,5 Lukyanov,6 and others have found a logarith
mic correction to the low-t limit in Eq. ~38!. Lukyanov’s
exact asymptotic expansion for the free energy per spin
zero magnetic field is

f 52J ln 22
~kBT!2

3J F11
3

8
g31O~g4!G

2
33/2~kBT!4

10pJ3
@11O~g!#, ~45!

whereg(t/t0) andt0 are the same as given in Eqs.~35b! and
~36d!, respectively, and whereg(t) was plotted in Fig. 5.
The specific heat at constant volume is calculated usinC
52T]2f /]T2, yielding

Clt,g~T!

NkB
5

2kBT

3J F11
3

8
g31O~g4!G

1
2~35/2!

5p S kBT

J D 3

@11O~g!#. ~46!

This formula shows that the electronic specific heat coe
cient C(T)/T increases quadradically withT at low T ~after
subtracting the logarithmic corrections!. The numerical pref-
e
-

-
he

as

-

,

at

in

-

actor of thet3 term is 1.98478••• . If the approximate ex-
pansion forg(L) in Eq. ~36! is substituted into Eq.~46!, one
obtains

Clt,log~T!

NkB
5

2kBT

3J H 11
3

~2L!3
1OF 1

~2L!4G J
1

2~35/2!

5p S kBT

J D 3F11OS 1

2LD G , ~47!

where the prefactor 3/8 in the logarithmic correction te
was found independently by Klu¨mper,5 confirming Refs. 61
and 68. The difference betweenClt,log(T) and Clt,g(T) is
plotted vs temperature in Fig. 12, where the difference
comes.10210 only for t*1025.

Shown in Fig. 13 is the deviationDC/NkB (d) of the
Bethe ansatz data5 from Lukyanov’s theoretical prediction in
Eq. ~46!. For temperaturest&1024, the agreement is bette
than 1028. At higher temperatures, the uncertainty in t
theoretical prediction due to the unknownO(g4) and higher
order correction terms becomes an important factor in
comparison. The length of the error bar on each data poin
Fig. 13 has arbitrarily been set to (4/3)tg4(t) @cf. Eq. ~46!#;
the O(g) uncertainty in theT3 term is negligible compared

FIG. 11. ~a! Difference DC/t between the electronic specifi
heat coefficient from the Bethe ansatz data~Ref. 5! and the nominal
coefficient of 2/3~top data set!, plotted vs reduced temperaturet.
Moving down the figure, successive data sets show the influenc
correcting for cumulative logarithmic correction terms.~b! Ex-
panded plots at low temperatures. The reduced temperaturet
5kBT/J and we have setN5kB51. In both~a! and ~b!, the lines
connecting the data points are guides to the eye.
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to this. Also plotted in Fig. 13 is the deviation of the nume
cal data from the extrapolated linear low-T behavior (s). A
comparison of the two data sets indicates that theO(g3)
logarithmic correction term is responsible for at least mos
this latter difference for temperaturest&0.001.

A more rigorous evaluation of the influence of the abo
logarithmic correction term is obtained by correcting for it
the plot ofDC/t vs t, as shown by the second curve from t
top in each of Figs. 11~a! and 11~b!. From the latter figure,
we infer that although subtracting this correction term fro
the data helps to remove the zero-temperature singulari
singularity is still present but with reduced amplitude. Th
means that additional logarithmic correction terms are

FIG. 12. Log-log plot vs temperatureT of the difference be-
tween our approximate logarithmic expansionClt,log /(NkB) of
Lukyanov’s theory~Ref. 6! and his exact predictionClt,g /(NkB) for
the low-temperature limit of the magnetic specific heat of the s
S51/2 antiferromagnetic uniform Heisenberg chain, for the te
perature range 10230<t<0.5.

FIG. 13. Semilog plot vs temperatureT of the differenceDC
5C2Clt,g (d) between the Bethe ansatz numerical specific h
C(T) data ~Ref. 5! and Lukyanov’s theory~Ref. 6! @Clt,g(T)# for
the spinS51/2 antiferromagnetic uniform Heisenberg chain at lo
temperatures. The error bar on each data point is an estimate
certainty in the theory due to higher order correction terms t
were not calculated. Also shown is the deviationDC5C
2(2/3)NkB

2T/J (s) of the numerical data from theT→0 limit of
C(T).
f

, a

-

portant, within the accuracy and precision of the data. A
other indication of this is shown in Fig. 14, where we ha
plotted DC/t3 vs t. According to Eq.~46!, after accounting
for the logarithmic correction term~s!, the result should be
independent oft at low t. Instead, both before and after a
counting for the log correction term, there is a strong uptu
at low temperatures although the strength of the upturn
smaller after subtracting the influence of the log correct
term.

The numerical Bethe ansatz specific heat data5 are suffi-
ciently accurate and precise that we can estimate the co
cients of the next two logarithmic correction (g4, g5) terms
in Eq. ~46! from these data as follows. From Eq.~46!, if we
plot the numerical data as@C(t)/(NkBt)2(2/3)(1
13g3/8)#/g4 vsg at low temperatures, where thet3 term can
be neglected, and fit the lowestt data by a straight line, they
intercept forg→0 gives the coefficient of theg4 term and
the slope gives the coefficient of theg5 term. This plot is
given in Fig. 15. This type of plot places extreme deman
on the accuracy of the data. Even so, we see that the
follow the required linear behavior even at the lowest te
peratures. We fitted a straight line to the data fromt55
310225 up to a maximum temperaturetmax. The fit param-
eters and rms deviation held nearly constant fortmax55
310215 ~11 data points! up to tmax5531028 ~18 data
points!, but both quantities changed rapidly upon further
creasingtmax. The fit for tmax5531028 is shown as the
straight line in Fig. 15, along with the fit parameters. Fro
the parameters of the fit@after accounting for the prefactor o
2/3 in Eq.~46!#, we include our estimated coefficients in E
~46! explicitly as

Clt,g~T!

NkB
5

2kBT

3J F11
3

8
g31a4g41a5g51O~g6!G

1
2~35/2!

5p S kBT

J D 3

@11O~g!#, ~48a!

n
-

t

un-
t

FIG. 14. CoefficientDC/t3 of the expectedt2 dependence of the
electronic specific heat coefficient at low temperatures~top data
set!. Moving down the figure, successive data sets show the in
ence of correcting for cumulative logarithmic correction terms.
all logarithmic corrections were accounted for, the data would
come independent oft for t→0. Here, the reduced temperature
t5kBT/J and we have setN5kB51. The lines connecting the dat
points are guides to the eye.
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a451.5374~3!, a553.125~11!. ~48b!

The influences of theseg4 andg5 logarithmic correction
terms on the data in Figs. 11 and 14 are shown as the
additional data sets in each figure, where accounting
these two terms is seen to largely remove the remaining
gular behavior ast→0. From Fig. 14, we can now estima
that the coefficient of thet3 term in Eq.~48! is a little larger
than 2, contrary to the exact value 1.98478•••. The magni-
tude of this difference is about as expected from theO(g)
logarithmic correction to thet3 term, sinceg(t;0.1);0.1.
The remaining upturn at low temperatures in Fig. 14 is d
to residual logarithmic corrections which are not accoun
for.

If the approximate expansion forg(L) in Eq. ~36! is in-
serted into Eq.~48a!, one obtains

Clt,g

NkB
5

2kBT

3J H 11
3

~2L!3
2

9 ln~L!216a4

~2L!4

1
ln L@18 ln~L!264a429#132a5

~2L!5
1OF 1

~2L!6G J
1

2~35/2!

5p S kBT

J D 3F11OS 1

2LD G . ~49!

IV. FITS TO x* „t… AND C„t…
OF HEISENBERG SPIN LATTICES

A. General x* „t… fit considerations

The general expression we use to fit theoretical numer
x* (t) data forS51/2 Heisenberg spin lattices is

x* ~ t !5
e2Dfit* /t

4t
P (r )

(q)~ t !, ~50a!

FIG. 15. Plot showing the estimation of the coefficients of t
O(g4) andO(g5) logarithmic correction terms in Eq.~46! for the
magnetic specific heat of theS51/2 AF uniform Heisenberg chain
The reduced temperature ist5kBT/J and we have setN5kB51.
o
r

n-

e
d

al

P (r )
(q)~ t !5

11 (
n51

q

Nn /tn

11 (
n51

r

Dn /tn

, ~50b!

where the ordersq and r of the Pade´ approximantP (r )
(q) are

often constrained by the behavior ofx* (t) at low t, and the
fitted gapDfit* is not necessarily the same as the true gap.
high t, x* (t) in Eqs.~50! approaches the Curie law 1/(4t) as
required@for a general spinS lattice, the numerical prefacto
1/4 in Eq.~50a! would be replaced byS(S11)/3].

TheNn andDn parameters in Eq.~50b! are not in general
independent if one or more of the HTSE conditions in E
~5b! and ~5c! are invoked. For example, forn51 –3 one
finds

D15~d11N1!2Dfit* , ~51a!

D25~d21d1N11N2!2Dfit* ~d11N1!1
Dfit*

2

2
, ~51b!

D35~d31d2N11d1N21N3!2Dfit* ~d21d1N11N2!

1
Dfit*

2

2
~d11N1!2

Dfit*
3

6
. ~51c!

In general, one has

Dn5 (
p50

n

(
m50

n2p
~2Dfit* !p

p!
dmNn2p2m . ~52!

A fit of experimental or theoreticalx* (t) data by Eqs.~50!
can be constrained by inserting one or more of Eqs.~51! and
~52! into Eq. ~50b!. These constraints are especially use
for high-t extrapolations whenx* (t) data are not available
for high temperaturest@1, and/or to reduce the number o
fitting parameters required to obtain a fit of specified pre
sion. In the following fits to the numericalx* (t) data for the
dimer, the uniform chain, and finally our QMC and TMR
data for the alternating-exchange chain, the three constra
in Eqs.~51! onD1 , D2, andD3, respectively, are enforced i
each case, whered1 , d2, andd3 for the alternating-exchang
chain are given in Eq.~15!.

All of the fits reported in this paper were carried out on
400 MHz Macintosh G3~B&W ! computer with 1GB of
RAM. Most fits were implemented using the progra
MATHEMATICA 3.0, although a few of the simpler ones~fits
to experimental data! were done usingKALEIDAGRAPH 3.08c.
The fits usingMATHEMATICA sometimes required prodigiou
amounts of memory, e.g., 930 MB for the 28-parameter fi
the combined 2551 data point QMC and TMRGx* (a,t)
data set for the alternating-exchange chain in Sec. V bel

B. Fit to x* „t… of the SÄ1Õ2 antiferromagnetic
Heisenberg dimer

The spin gap of theS51/2 Heisenberg dimer isD5J,
where J is the antiferromagnetic exchange constant with
the dimer. The spin susceptibility and its low-temperatu
limit are given by Eqs.~8!. Thex* (t) is plotted in Fig. 1~a!
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TABLE I. Fitted parameters forx* (t) of the S51/2 antiferromagnetically coupled Heisenberg dim
(a50) @Eqs.~50! with Dfit* 51] andx* (t) andC(t) @Eqs.~54!# for the uniform chain (a51). x* (t) Fit 1
for the uniform chain (0.01<t<5) @Eqs. ~50! with Dfit* 50] uses powers of 1/t only, whereasx* (t) Fit 2
(0<t<5) @Eqs.~53!# also incorporates logarithmic correction terms.

parameter x* (a50) x* (a51) Fit 1 x* (a51) Fit 2 C(a51)

N1 0.6342798982 20.053837836 20.240262331211 20.018890951426
N2 0.1877696166 0.097401365 0.451187371598 0.024709724025
N3 0.03360361730 0.014467437 0.0125889356883 20.0037086264240
N4 0.003861106893 0.0013925193 0.0357903808997 0.00301599759
N5 0.0002733142974 0.00011393434 0.0080184064328320.00037946929995
N6 0.00182319434072 0.00004268389399
N7 0.0000533189078137
N8 0.000184003448334
N81 1.423476309767
N82 0.341607132329
t1 5.696020642244
D1 20.1157201018 0.44616216 0.259737668789 20.51889095143
D2 0.08705969295 0.32048245 0.581056205993 0.59657583453
D3 0.005631366688 0.13304199 0.261450372018 20.15117343936
D4 0.001040886574 0.037184126 0.142680453011 0.074445241148
D5 0.00006832857434 0.0028136088 0.0572246926066 20.0024804135233
D6 0.00026467628 0.0176410851952 20.00053631174698
D7 0.00390435823809 0.00082005310111
D8 0.000119767935536 20.00010820401214
D9 0.000011991365422
a1 20.000015933393
a2 0.013021564
a3 0.0043275575
a4 49.422168
a5 0.00040160786
a6 325.22706
fit

in

fit

e

o

r

.
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r
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r
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e
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for 0.02<t<4.99. In order to later obtain a continuous
function for x* (a,t) for the entire range 0<a<1 of the
alternating-exchange chain, it is necessary to first obta
high accuracy fit to the exact expression~8a! for the dimer
by our general fitting function in Eqs.~50!, in addition to Fit
1 obtained for the uniform chain below. The form of our
function in Eqs.~50! allows both the low- and high-t limiting
forms of x* (t) for the dimer to be exactly reproduced. Th
low-t limit in Eq. ~8b! requires thatr 5q and that Dq

5Nq/4 in the Pade´ approximantP (r )
(q) ; we also takeDfit5D,

so the total number of fitting parameters is 2q24.
We fitted the 498-point double-precision representation

x* (t) in Fig. 1~a! from t50.02 tot54.99 by Eqs.~50! using
the above constraints. The variances of the four fits foq
5r 54, 5, 6, and 7 were 2.5310213, 1.17310216, 5.3
310217, and 5.6310219, respectively, showing that Eqs
~50! have the potential for very high accuracy fits with
relatively small number of fitting parameters. The s
Nn (n51 –5) andD4 parameters of the fit forq,r 55 are
given in Table I, along withD1 , D2, andD3 computed from
Eqs.~51! andD55N5/4. The Pade´ approximantP (5)

(5) in the
fit function has no poles or zeros on the positivet axis. The
fit is shown by the solid curve in Fig. 1~a!, and the deviation
of the fit from the exact susceptibility in Eq.~8a! is plotted
versust in Fig. 1~b!.
a

f

C. Fits to x* „t… of the SÄ1Õ2 antiferromagnetic
uniform Heisenberg chain

Fit 1: 0.01<t<5. Fits to the uniform chainx* (t) calcu-
lated by Eggert, Affleck, and Takahashi3 for limited tempera-
ture regions were obtained previously.4 Here we obtain a fit
~Fit 1! to the higher accuracy data of Klu¨mper and Johnston5

for the temperature region 0.01<t<5 ~999 data points! us-
ing Eqs.~50!, the results of which will be utilized later in the
fit function for t>0.01 for our QMC and TMRG alternating
exchange chainx* (a,t) data. This uniform chain fit can be
accurately extrapolated to arbitrarily hight.

The requirement thatx* (t→0) is a finite non-zero value
requiresDfit* 50 and r 5q11 in Eqs. ~50!. We found that
usingq55 andr 56 produces a fit sufficiently accurate fo
use in the fit function for our QMC and TMRG calculation
for the alternating chain. The sevenNn (n51 –5) and
Dn (n54 –6) parameters obtained for the fit withq55, r
56 are given in the column labeled ‘‘Fit 1’’ in Table I
along with D1 , D2, andD3 computed from Eqs.~51!. The
PadéapproximantP (6)

(5) in the fit function has no poles o
zeros on the positivet axis. The deviation of the fit from the
data is plotted in Fig. 16. The variance of the fit is 2.
310212, and the relative rms deviation of the fit from th
data in the fittedt region is 14.5 ppm. Extrapolation of the fi
to higher temperatures is very accurate.
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The quality of Fit 1 does not approach the limitation im
posed by the absolute accuracy of the data (131029). For
an ideal fit, the variance is expected to be;10218 and the
relative rms deviation;0.01 ppm. As can be inferred from
Fit 2 in the following section, the reason that Fit 1 cannot
optimized to this extent is due to thet50 critical point and
associated logarithmic divergence in the slope ofx* (t) as
t→0; this divergence cannot be fitted accurately by a fin
polynomial or Pade´ approximant. We attempted to improv
the accuracy of the fit over the same temperature ra
0.01<t<5 by replacing the Pade´ approximantP (6)

(5) in the fit
function by P (7)

(6) , which incorporates two additional fitting
parameters. The variance improved somewhat to 2
310212 and the relative rms deviation improved slightly
12.2 ppm, but the Pade´ approximant developed a pole
1/t5129.23, and hence this fit was discarded. Although
temperature at which this pole occurs is below the fitted te
perature range, as a general rule we cannot allow poles in
fit function at low temperatures because of problems that
occur when using the fit function to model experimental d
which include data at temperatures lying below the fit
temperature range of the fit function. In fact, we will encou
ter this situation frequently in modeling experimental da
later. For example, for NaV2O5, t50.01 corresponds to a
absolute temperatureT'7 K, whereas the experimental da
and modeling extend down to'2 K.

Fit 2: 0<t<5. We can greatly improve the accuracy
the fit compared to that of Fit 1, and extend the fit tot50, by
restricting the high-temperature limit of the fit and using
the fit function one or more low-temperature logarithmic c
rection terms discussed in Sec. III A 2. In particular, in th
section we obtain a very high precision fit~Fit 2! to the exact
t50 value and to the calculations of Klu¨mper and Johnston5

over the entire temperature range 5310225<t<5 of the cal-
culations. We do not use this fit in our formulation of the
function for the alternating-exchange chain. However, Fi
will be generally useful for evaluating the accuracy of oth
theoretical calculations ofx* (t) for the uniform chain, such
as our TMRG calculations to be presented below, and

FIG. 16. Semilog plot vs temperatureT of the deviation of Fit 1
from the magnetic susceptibility calculations of Klu¨mper and
Johnston~Ref. 5! for theS51/2 uniform antiferromagnetic Heisen
berg chain.
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modeling appropriate experimentalx(T) data whose scaled
upper temperature limit is belowt55.

We initially formulated a fit function utilizing a modified
Padéapproximant in which the last term of the numerat
and/or denominator contained thex lt,log* expansion in Eq.
~37!, such that the low-temperature expansion of the fit fu
tion yieldedx lt,log* to lowest orders int. The best fit to the
data fromt55310225 to 2.5 ~777 data points! was unsatis-
factory, with a variancev52.4310211 and a relative rms
deviations rms545 ppm. Allowing an arbitraryt2 coefficient
in place of the exact valueA3/p3 yielded an improved fit
with v51.1310212 and s rms59.6 ppm. However, this fit
was still unsatisfactory, given the high absolute accura
(131029) of the data. From these results it became cl
that a fit function which can fit the data to much high
accuracy over such a large temperature range would ind
have to include an expressionx log* (t) containing logarithmic
correction terms, but where the form and/or coefficient
one or more of these terms would have to be empirica
determined by trial and error. This process yielded the f
mulation we now describe.

The x log* (t) function is incorporated into our fit function
in Eqs.~50! as follows. As in Fit 1, the finite value ofx* (0)
requiresDfit* 50 in Eq. ~50a! and r 5q11 in the Pade´ ap-
proximantP (r )

(q)(t) in Eq. ~50b!. Since the two terms highes
order in 1/t in P (r )

(q)(t) ~one each in the numerator and d
nominator! dominate the fit ast→0 and become small fo
t*1, relative to the other terms in the numerator and
nominator, respectively, we incorporatex log* (t) into the last
term in the numerator of a modifiedP (r )

(q)(t). Trial fits
showed that to obtain the optimum accuracy of the fit
quiredq58 andr 59.

Our final fit function for Fit 2 is

x* ~ t !5S 1

4t D
11F (

n51

7

Nn /tnG14N8x log* ~ t !/t8

11F (
n51

8

Dn /tnG1N8 /t9

, ~53a!

x log* ~ t !5
1

p2 F11
1

2L 2
ln~L1 1

2 !2N81

~2L!2
1

N82

~2L!3G ,

~53b!

L[ ln~ t1 /t !, ~53c!

subject to the three constraints onD1 , D2, andD3 in Eqs.
~51! which are required by the HTSE. Two of the four log
rithmic correction terms in Eq.~53b! are identical to the first
two such terms in Eq.~34a!. By construction, the exac
x* (0)51/p2 is fitted exactly.

We fitted all of the numericalx* (t) data,5 calculated over
the range 5310225<t<5 ~1119 data points!, by Eqs.~53!.
The 19 fitting parameters of the fit function~53!, which are
Nn (n51 –8), Dn (n54 –8), N81, N82, andt1, are given in
the column labeled ‘‘Fit 2’’ in Table I, along withD1 , D2,
andD3 computed from Eqs.~51!. The data to parameter rati
is 59. The denominator of the modified Pade´ approximant in
Eq. ~53a! has no zeros for any real positivet. The fit is
shown in the low-temperature region 0<t<0.02 in Fig. 4~b!
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@over the largert range plotted in Fig. 4~a!, the fit is indis-
tinguishable from the data and is therefore not plotted the#.

The deviation of Fit 2 from the numerical data for 10225

<t<5 is plotted vs log10t in Fig. 17~a!, and an expanded
plot at the higher temperatures is shown in Fig. 17~b!. Due to
a logarithmic divergence inx log* (t) at t5t155.696, Fit 2
should not be used~e.g., for modeling experimental data! at
temperaturest*5. The variance of the fit is 9.8310217, and
the relative rms deviation iss rms50.087 ppm. These value
are both much smaller than for Fit 1 above. The relativ
large number of fitting parameters in Fit 2 is justifieda pos-
teriori by the extremely high quality of the fit over a tem
perature range spanning 25 orders of magnitude.

D. Fit to C„t… for the SÄ1Õ2 antiferromagnetic uniform
Heisenberg chain

The logarithmic corrections to the magnetic specific h
C(t) at low temperatures, discussed above in Sec. III B 2,
not pose as serious a problem for fitting the data as
x* (t), because the strength of these log corrections is m
smaller forC(t) than forx* (t). In addition, since here we fi
C(t), and not the electronic specific heat coefficientC(t)/t,
the influence of the log corrections is ameliorated by

FIG. 17. ~a! Semilog plot of the absolute deviation of Fit 2 (
<t<4) from the magnetic susceptibility calculations of Klu¨mper
and Johnston~Ref. 5! versus temperatureT. ~b! Expanded plot of
the data in~a! at the higher temperatures.
y
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multiplicative leading ordert1 dependence ofC(t). Even so,
in order to obtain the optimum fit to the highly accura
Bethe ansatzC(t) data,5 we found it necessary to take th
influence of the logarithmic corrections into account.

Our fit to the Bethe ansatzC(t) data,5 some of which
were shown previously in Fig. 8~a!, was carried out in two
stages. First, the data fromt50.01 to the maximum tempera
ture t55 of the calculations were fitted by the Pade´ approx-
imant P (r )

(q) in Eq. ~50b! with a prefactor 3/(16t2) to satisfy
the HTSE in Eqs.~44! to lowest order in 1/t. The ordersq
and r of P (r )

(q) were chosen to satisfyr 5q13 so thatC(t
→0)}t. To obtain a fit of the required accuracy~see the fit
deviations given below! we found thatq56 andr 59 are of
sufficiently high order. Due to the presence of the log c
rections at very lowt, we did not require the parametersN6
andD9 to yield the exact coefficientg52/3 in the expression
C(t)/NkB5gt, in a low-t expansion of the fit function. We
also found that to obtain the best fit, only the one additio
HTSE constraint~on D1) in Eq. ~51a! ~with Dfit* 50) could
be used. It was quite difficult to find the region in parame
space in which the absolute minimum in the variance of
fit resided; the initial starting parameters usually flowed
regions with local variance minima in them with much larg
values~by two to four orders of magnitude! than the smallest
variance we ultimately found. Then the deviation of the
from all the data for 5310225<t<5 was computed. The fi
deviations fort>0.01 were very small@O(1028)#, but the
log corrections which become most important at lower te
peratures resulted in fit deviations att,0.01 an order of
magnitude larger. We therefore fitted the fit deviation vers
t for 0,t<0.1 by a separate empirically determined functi
F(t), so the net fit function consists of the Pade´ approximant
fit function minus the fit function to the low-t fit deviations.
In the final fitting cycles the two functions were refined s
multaneously.

Our final fit function forC(t) in the range 0<t<5 is

C~ t !

NkB
5

3

16t2
P (9)

(6)~ t !2F~ t !, ~54a!

P (9)
(6)~ t !5

11F (
n51

6

Nn /tnG
11F (

n51

9

Dn /tnG , ~54b!

F~ t !5a1t sinS 2p

a21a3t De2a4t1a5te2a6t, ~54c!

subject to the constraint onD1 in Eq. ~51a! which is required
by the HTSE. By construction, the exactC(0)50 is fitted
exactly. The 20 fitting parameters,Nn (n5126), Dn (n
5229), andan (n5126), are given in Table I, togethe
with the constrained parameterD1 computed from Eq.~51a!
with Dfit* 50 andd1 given in Eq.~44b!. The deviation of the
fit from the data is shown in a semilog plot vs temperature
Fig. 18. The maximum deviations of'6431028 occur at
t'0.3. The absolute rms deviation of the fit from all the da
~1119 data points!, which extend over the temperature ran
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5310225<t<5, is 1.3431028, and the relative rms devia
tion for 0.01<t<5 ~999 data points! is 0.50 ppm.

At high temperatures, ourC(t) fit function reduces by
construction to the lowest order 1/t2 and 1/t3 terms of the
HTSE of C(t) in Eqs.~44!, so extrapolation of ourC(t) fit
function to arbitrarily higher temperatures should be ve
accurate~see Fig. 18!. In particular, even though our fit wa
to C(t) and hence not optimized as a fit to the electro
specific heat coefficientC(t)/t, the magnetic entropyS at t
5` computed from ourC(t) fit function is

S~ t5`!

NkB
[E

0

` C~ t !

NkBt
dt50.693 147 235, ~55!

which is the same as the exact value ln 250.693 147 181 to
within 8 parts in 108. This agreement reflects well on our fi
function, and of course also strongly confirms the high ac
racy of the Bethe ansatzC(t) data.5

E. Fit function for the SÄ1Õ2 AF alternating-exchange
Heisenberg chainx* „a,t…

Here we formulate a single two-dimensional (a,t) func-
tion to accurately fit numerical calculations ofx* (a,t) for
theS51/2 alternating-exchange Heisenberg chain for the
tire range 0<a<1, and for the entire temperature ranget
>0.01 over which our Fit 1 forx* (t) of the uniform chain is
most accurate, subject to four general requirements as
lows. ~i! The HTSE of thex* (a,t) fit function must give the
correct result toO(1/t4), as satisfied by the fit functions fo
the dimer and uniform chain~Fit 1! susceptibilities above, so
that the fit can be accurately extrapolated to higher temp
tures. ~ii ! We require thex* (a,t) fit function to become
identical with those found above for the isolated dimer a
for the uniform chain~Fit 1! whena50 anda51, respec-
tively. As discussed above in Sec. II C, at any finite tempe
ture, x* (d, t̄ ) in the variablesd and t̄ is aneven~analytic!
function of d. Therefore, as a minimum accommodation
this fact, ~iii ! we require that the fit function forx* (a,t),

FIG. 18. Semilog plot of the absolute deviation of the
(10225<kBT/J<5) from the specific heat calculations of Klu¨mper
and Johnston~Ref. 5! in Fig. 8~a! versus temperatureT. The fit
deviation is negligible at low temperaturesT<1026J/kB . The lines
connecting the data points are guides to the eye.
y
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when transformed to the formx* (d, t̄ ), must have the prop-
erty ]x* (d, t̄ )/]dud5050 at all finite temperatures. This re
quirement is clearly the minimum necessary in order to
curately interpolate the fit vsa for a→1 at eacht, and to
thereby accurately model the susceptibility of materi
which are in or near this limit. Finally, the QMC and TMRG
calculations ofx* (a,t) to be presented below are suffi
ciently accurate and cover sufficiently large ranges ofa and
t with sufficient resolution that~iv! we require thenonana-
lytic energy gapD(a) @see Eqs.~19! and~20!# to be included
in the fit function in order to fit the data fora&1 at t!1, so
as to avoid the alternate necessity of including high-or
power series ina and t in the fit function. We note that
according to Eq.~19b! or ~20!, ]D* (d)/]dud505`. The ma-
jor obstacle we faced in formulating the fit function fo
x* (a,t) was to simultaneously satisfy both requiremen
~iii ! and ~iv!, which at first sight seem to require mutual
exclusive forms for the fit function.

We found that these four requirements can all be satis
by an extension of the form of the fit function in Eqs.~50!
which was used above for the isolated dimer and for
uniform chain Fit 1. This extension consists of using a mo
fied Pade´ approximantPm(8)

(7) in the fit function in place of the
former P (r )

(q) . The fit function is

x* ~a,t !5
e2Dfit* (a)/t

4t
Pm(8)

(7)~a,t !, ~56a!

Pm(8)
(7)~a,t !

5

F (
n50

6

Nn /tnG1~N71a1N72a
2!~D0* /t !y/t7

F (
n50

7

Dn /tnG1~D81a1D82a
2!~D0* /t !ze(D0* 2Dfit* )/t/t8

,

~56b!

Dfit* ~a!512
1

2
a22a21

3

2
a3, ~56c!

D0* ~a!5~12a!3/4~11a!1/41g1a~12a!1g2a2~12a!2,
~56d!

N05D051, ~56e!

Nn~a!5 (
m50

4

Nnmam ~n5126!, ~56f!

Dn~a!5 (
m50

4

Dnmam ~n5127!. ~56g!

To satisfy requirement~i!, D1(a), D2(a), andD3(a) are
determined from theN1(a), N2(a), and N3(a) fitting pa-
rameters according to the three constraints in Eqs.~51! de-
manded by the HTSE. In order to satisfy requirement~ii !, the
$Nn0 ,Dn0% parameters are set to be identical with those
termined above for the dimer, and we requi
$Nn(1),Dn(1)% to be identical with the corresponding fit pa
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rameters determined above in Fit 1 for the uniform chain
order to satisfy requirement~iii !, the Nnm and Dnm coeffi-
cients must satisfy

(
m50

4

~n22m!~Nnm or Dnm!50, ~57!

so that nod1 term appears in the Taylor series expansions
d of the transformed$N̄n(d),D̄n(d)%. These various con
straints on the$Nnm ,Dnm% parameters reduce the number
independent fitting parameters within this set from 50 to
Together with the parametersN71, N72, N81, N82, y, z in
Eq. ~56b! andg1 , g2 in Eq. ~56d!, the total number of inde-
pendent fitting parameters in the fit function is 28.

The quantityDfit* (a) in the exponential prefactor toPm(8)
(7)

in Eq. ~56a! cannot be set equal to the true nonanalytic g
D* (a), because this prefactor affects the fit at allt, and
would not allow requirement~iii ! above to be fulfilled. In
addition, the nonanalytic critical behavior ofD* (a→1) in
practice only becomes manifest inx* (a,t) at low tempera-
turest!1. Therefore, we separated the spin gap into an a
lytic part Dfit* (a) which goes into the argument of the exp
nential prefactor in Eq.~56a!, and a nonanalytic partD0* (a)
@satisfying requirement~iv!# which is placed into the argu
ment of the exponential in the last term of the denomina
of Pm(8)

(7) in Eq. ~56b! and which therefore only become
important at low temperatures. The first two terms ofDfit* (a)
~to ordera1) in Eq. ~56c! are the first two terms of the exac
dimer series expansion up toO(a9) given by Barnes, Riera
and Tennant53 for the AF alternating-exchange chain, and t
last two are included so that]Dfit* (d)/]dud5050, in accor-
dance with requirement~iii !. The nonanalyticD0* (a) in Eq.
~56d! contains the behavior in Eq.~19a! proposed by Barnes
Riera, and Tennant,53 plus two analytic terms which are in
cluded to adjust thea dependence fora→1 but which make
no contribution ata50 or a51. Provided that the inequal
ity y,z.4/3 is satisfied by the powersy andz in Eq. ~56b!,
the last term in each of the numerator and denominato
Pm(8)

(7)(a,t), when transformed to the variables (d, t̄ ), has a
partial derivative with respect tod which is zero atd50.

We have now shown that atd50 (a51), the partial de-
rivative of each part ofx* (d, t̄ ) with respect tod is zero~if
y,z.4/3, which is confirmed in the actual fit later!. Hence,
the entire fit function has the property]x* (d, t̄ )/]dud5050
at all finite temperatures, thus satisfying requirement~iii !,
despite the fact that the fit function contains the nonanal
D0* (a) as required by requirement~iv!.

At the lowest temperatures, the last term in each of
numerator and denominator ofPm(8)

(7) in Eq. ~56b! should
dominate the fit, together with the exponential prefactor
Pm(8)

(7) in Eq. ~56a!, so in this limit our fit function for 0,a
,1 becomes

x* ~a,t→0!5
N71a1N72a

2

4~D81a1D82a
2!

FD0* ~a!

t G y2z

e2D0* (a)/t.

~58!

This expression has the form of Eq.~10a! ~with g5y2z) as
required in the low-t limit. In fact, the forms of the last term
n

n

.

p

a-

r

of

ic

e

o

in each of the numerator and denominator ofPm(8)
(7) were

designed to result in the form of Eq.~10a! in the low-t limit,
with D0* and t entering the prefactor only as their ratio as
Eq. ~26!, in addition to being consistent with requiremen
~iii ! and ~iv!. One might expect the fittedy andz powers to
satisfy y2z5g51/2 as in Eq.~10b!. However, if a fit of
x* (t) data by Eq.~10a! is not carried out completely within
the low-t limit, an effective exponentg;1 is often inferred
@see, e.g., Eq.~70! and subsequent discussion, and Fig.
below#. Similarly, since many of our calculatedx* (a,t) data
sets for differenta in the fitted temperature ranget>0.01 are
not, or do not contain extensive data, in the low-t limit, we
did not impose the constrainty2z51/2. On the basis of the
above discussion we expect the actual fitted values ofy andz
to yield y2z;1. In fact, as will be seen in the next sectio
our fitted parametersy andz give y2z51.14.

V. QMC AND TMRG x* „a,t… CALCULATIONS AND FIT
FOR THE SÄ1Õ2 AF ALTERNATING-EXCHANGE

HEISENBERG CHAIN

QMC simulations ofx* (a,t) were carried out onS
51/2 alternating-exchange chains containing 100 spins
a50.05, 0.1, 0.15,. . . , 0.9, 0.92, 0.94, 0.96, 0.97, 0.98, an
0.99 in various temperature ranges spanned by 0.01<t<4.

Complementary TMRG calculations ofx* (a,t) of S
51/2 alternating-exchange chains were carried out fora
50.80, 0.82, . . . , 0.96, 0.97, 0.98, 0.99, 0.995, and
where the number of states kept wasm5150 or 256. The
calculations were carried out for temperatures given byt
50.1, 0.2, . . . , (1/t)max, with (1/t)max&500 increasing with
increasinga, and comprised a total of 22 370 (a,t) param-
eter combinations. The details of the calculational meth
are given in Refs. 10 and 11. It should be noted that
TMRG calculations by their nature are explicitly in the the
modynamic limit.

The reason for doing TMRG calculations for the unifor
chain (a51) was to enable comparison of the results w
the values5 computed with the Bethe ansatz which have
high absolute accuracy of 131029. This comparison was
done using the above very accurate and precise Fit 2 for
Bethe ansatz data. The relative deviation of the TMRG d
from Fit 2 is shown in Fig. 19~a!, and an expanded plot fo
the higher temperature regiont>0.01 is shown in Fig. 19~b!.
This comparison indicates that the accuracy of the TMR
calculations for bothm5150 and 256 in the ranget>0.01 is
better than 0.1%, which is the same as the estimate10 made
previously form580. However, the accuracy of these calc
lations deteriorates rapidly at lowert, to about 3% at the
lowest temperaturest'0.002 form5150.

Since the TMRG calculations extend close to thet50
limit for most of the above-stateda values, the spin gaps ca
be estimated from these data. Comparisons with previ
work can then be made of the dependence of the spin ga
a. An important question, not answered yet in previo
work, is the approximatea value at which the asymptotic
critical region is entered upon approaching the uniform lim
Performing these estimates and comparisons will be p
poned to the following sections. In the present section,
present the QMC and TMRGx* (a,t) data and obtain a fit to
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these combined data by the fit function formulated in
previous section.

Some of the results fort<2 are shown as the filled sym
bols without error bars in Fig. 20~a! ~the error bars are
smaller than the data symbols!; an expanded plot of data fo
t<0.4 is shown in Fig. 20~b!. @A log-log plot of the TMRG
x* (a,t) data at low t is shown below in Fig. 27.# Also
shown in both figures as the two bounding solid curves w
no data points are the fits we obtained above tox* (t) for the
dimer and uniform chain~Fit 1!, respectively. The data
points plotted for a givena value are the subset below th
upper temperature limits of the figures, of the subset of av
able data points which were fitted by our fit function as d
scribed below.

We fitted a combined QMC and TMRGx* (a,t) data set
containing 2551 selected data points over the tempera
range 0.01<t<10. The 802 QMC data points covered th
ranges 0.01&t<4 and 0.05<a<0.99. The average est
mated absolute accuracy of these QMC data is 1.731024.
The best estimated accuracy among these QMC data is
31026 and the worst is 1.531023, with the better accura
cies occurring at the highest temperatures. The 1749 TM
data points covered the ranges 0.01<t<10 and 0.8<a
<0.995. We did not use all 22 370 TMRG data points in t
available data set, because this would have weighted the
gion a&1 too heavily in the fit, and in any case a larg
fraction of these are for temperatures below our lo
temperature fitting limit of t50.01. We used the low

FIG. 19. ~a! Semilog plot vs temperatureT of the relative de-
viation of the magnetic susceptibilityx of theS51/2 antiferromag-
netic uniform spin Heisenberg chain calculated with the TMR
technique from that calculated~Ref. 5! using the Bethe ansatz.~b!
Expanded plot of the data in~a! at the higher temperatures.
e
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temperature data to determine the spin gaps as describe
the following section.

We fitted thisx* (a,t) data set by Eqs.~56!, with the
constraints on the parameters discussed above. Obtaini
reliable 28-parameter two-dimensional fit to these data o
the full above-cited ranges oft anda, with no poles in the fit,
posed a very difficult challenge. The particular choice
starting parameters and the detailed sequence of refinem
were found to be important to avoiding poles in the final
Since there are a total of 28 parameters in the fit function
2551 data points, the data to parameter ratio is 91. The n
ber of fitting parameters seems large, until it is realized t
we are simultaneously fittingx* (t) data for 29 differenta
values, so on average ax* (t) data set for a givena value is
fitted by a single parameter. A weighting function was n
included during the variance minimization, because we w
interested in obtaining a fit which treated all the data poi

FIG. 20. ~a! Magnetic susceptibilityx versus temperatureT for
the spin S51/2 antiferromagnetic ~AF! alternating-exchange
Heisenberg chain with alternation parametera5J2 /J1 from 0 to 1,
as shown. The small filled circles are a selection of the calcula
QMC and TMRG data, where for clarity only a small subset of t
available data are plotted. The set of curves through the dat
obtained from the global two-dimensional (a,t) fit function in Eqs.
~56! with parameters given in Table II. The solid curves fora50
and 1 are plots of the fit function for the dimer and uniform cha
susceptibilities, respectively, for which no data are plotted. T
parameterJ1 is the larger of the two alternating exchange constan
~b! Expanded plot of the fit for a selection of data at low tempe
tures. Error bars are plotted with the QMC data in~b!, but are not
plotted in~a! because they are not visible on the scale of this figu
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TABLE II. Parameters in the fit function@Eqs.~56!# for x* (a,t) of theS51/2 antiferromagnetic alternating-exchange Heisenberg ch
Note thatD2 andD3 are respectively of seventh and tenth order ina.

parameter m50 m51 m52 m53 m54

N1m 0.63427990 22.06777217 20.70972219 4.89720885 22.80783223
N2m 0.18776962 22.84847225 5.96899688 23.85145137 0.64055849
N3m 0.033603617 20.757981757 4.137970390 26.100241386 2.701116573
N4m 0.0038611069 0.5750352896 22.3359243110 2.934083364 21.1756629304
N5m 0.00027331430 20.10724895512 0.40345647304 20.48608843641 0.18972153852
N6m 0 0.00578123759 20.02313572892 0.0289277450820.01157325374
N7m 2.5987034731027 22.3923619331027

D1m 20.11572010 21.31777217 1.29027781 3.39720885 22.80783223
D2m 0.08705969 21.44693321 5.09401919 210.51861382 8.97655318

5.75312680 (m55) 211.83647774 (m56) 4.21174835 (m57)
D3m 0.00563137 0.65986015 21.38069533 20.09849603 7.54214913

222.31810507 (m55) 27.60773633 (m56) 26.39966673 (m57)
215.69691721 (m58) 13.37035665 (m59) 23.15881126 (m510)

D4m 0.0010408866 0.1008789796 20.9188446197 1.6052570070 20.7511481272
D5m 0.0000683286 20.1410232710 0.6939435034 20.9608700949 0.4106951428
D6m 0 0.0367159872 20.1540749976 0.1982667100 20.0806430233
D7m 0 20.00314381636 0.01140642324 20.01338139741 0.00511879053
D8m 1.2512467931027 21.0382452331027

g1 g2 y z
0.38658545 20.20727806 4.69918784 3.55692695
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the same on an absolute scale; this choice optimizes th
for use in modeling experimental data.

The parameters of the fit are given in Table II, where
have also included the constrained parameters for comp
ness and for ease of implementation of our fit function by
reader. From Eqs.~51!, the constrained parametersD2 and
D3 contain products of the third-order~in a) polynomialDfit*
with itself and/or with the fourth-orderN1 fitting polynomial,
so D2 and D3 are of seventh and tenth-order, respective
The two-dimensional fit is shown as the set of solid curves
Fig. 20. The variance of the fit isv53.7731028. The abso-
lute rms deviationAv'1.931024 is about the same as th
average estimated accuracy of the QMC data noted ab
indicating that the fit function is appropriate and that the fi
a reliable representation of the data. The fit deviations fr
the 802 QMC and 1749 TMRG data are shown separatel
Figs. 21~a! and 21~b!, respectively. A comparison of the tw
figures shows that the TMRG data are, on average, sig
cantly more precise at a given temperature.

After the parameters in the presentx* (a,t) fit function
were finalized, as a check on the accuracy of the fit funct
for a values close to the uniform limit, we carried out QM
x* (t) simulations for alternating-exchange chains of len
L5400 and 800, factors of four and eight longer than
chains for which QMC data were combined with TMRG da
to determine the fit function, respectively. The simulatio
were carried out fora50.98, 0.985, 0.99, and 0.995 at tem
peratures 0.01<t<4. Overall, the fit function was found to
be in extremely good agreement with the QMC data. F
0.4<t<4, thex* (a,t) fit function agreed with the simula
tion data to within about6531025 or better. The deviations
of the fit function from the data for 0.01<t<0.4 are shown
in Fig. 22, along with the error bars on the QMC data.
can be seen from the figure, the only significant deviation
fit
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the fit function from the QMC data in thist range is at the
lowest temperaturet50.01 for each of the foura values.
Because the fit deviations at this temperature remain u
increasing the length of the simulated chain fromL5400 to
L5800, these fit deviations are most likely due to inaccu
cies in the fit function, as expected at this lowest fitted te
perature.

For compounds showing spin-Peierls or other types
second-order spin dimerization transitions, it is more app
priate to scalex by 1/J andT by J, whereJ is the average of
J1 andJ2, in which case the appropriate alternation para
eter isd rather thana. It is straightforward to convert ou
x* (a,t) fit function to the formx* (d, t̄ ), where t̄[kBT/J,
using Eq.~16b!. We have done this and plot thex* (d, t̄ ) fit
function versus temperature for a series ofd values in Fig.
23~a!. An appealing monotonic progression ofx* (d, t̄ ) with
increasingd is seen in Fig. 23~a!; an expanded plot at lowe
temperatures is shown in Fig. 23~b!. This formulation of the
fit function allows accurate estimates to be made of
temperature-dependent spin gap in compounds exhibi
spin-dimerization transitions, provided that the near
neighborS51/2 AF alternating-exchange Heisenberg mod
is appropriate to them. An illustration of the procedure a
the results to be gained will be given later when we mo
the x(T) data for NaV2O5.

VI. SPIN GAP FROM TMRG x* „a,t…

According to Eq.~11c!, if highly precisex* (t) data in the
low-t limit are available, the spin gapD* can in principle be
computed directly from the derivative of these data with
spect to inverse temperature. However, in general the m
mum temperature of the low-t limit region is ill defined since
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9582 PRB 61D. C. JOHNSTONet al.
it depends on how precise and accurate the data are an
accuracy to whichD* is to be determined. Therefore, i
practice one could define a temperature-dependent effe
spin gapDeff* from Eq. ~11c! as

Deff* ~ t !52
] ln~x* At !

]~1/t !
, ~59!

and then try to ascertainD* from the extrapolated zero
temperature limitD* 5 limt→0Deff* (t). Using Eq.~11b! would
be less desirable and precise because a fit of this type
cally averagesDeff* (t) over a rather large temperature rang

An overview of Deff* (a,t) determined from our TMRG
x* (a,t) data for 0.8<a<0.995 using Eq.~59! is shown in
Fig. 24~a!. At the lowest temperatures, and fora not too
close to 1, theDeff* (a,t) data do approach a constant val
with decreasingt, confirming the applicability of Eqs.~10!
and prior assumptions and hence Eqs.~11! and ~59! to the
alternating chain, and the approximate values ofD* (a) can
be estimated from the figure. Closer inspection reveals
Deff* (a,t) shows a weak maximum before decreasing

FIG. 21. Deviation in absolute units of the fit function for th
magnetic susceptibilityx* versus temperatureT for the spin S
51/2 antiferromagnetic~AF! alternating-exchange Heisenbe
chain, with alternation parametera5J2 /J1 from 0.05 to 0.995,
from the QMC data~a! and TMRG data~b!. The parameterJ1 is the
larger of the two alternating exchange constants. The absolute
deviations of the respective data from the fit are given in the figu
The fit function is given in Eqs.~56! with the parameters in Table
II.
the

ive

pi-
.

at
y

' 1
2 % to D* as t→0, as illustrated in Fig. 24~b! for a

50.8. For this among other reasons, we will not use Eq.~59!
to extract the spin gaps from our TMRGx* (a,t) data. On
the other hand, we need to know whether such behavio
expected, since it could conceivably arise from system
errors in the TMRG calculations. Therefore, in the next s
tion we study theDeff* (a,t) expected at low temperatures fo
the alternating-exchange chain. As part of this study, we
mulate and discuss the fit function which we will use in Se
VI B to extractD* (a) from our TMRGx* (a,t) data at low
temperatures.

A. Effective spin gap Deff* „D* ,t…
for the alternating-exchange chain

From our definition ofDeff* in Eq. ~59!, a discussion of
how this quantity varies witht at low t requires an indepen
dent estimate ofx* (a,t) for the alternating-exchange chain
which must include at least the leading order correction
the low-t limit in Eqs. ~10!. As a first attempt, we used th
general expression forx* (t) in Eqs. ~7!, which requires as
input the one-magnon dispersion relation«(k) for the alter-
nating chain. For this we used the explicit«(D* ,k) for 0
<a<1 in Eqs.~23! that we presented and discussed pre
ously. The resultantx* (t) is plotted for elevenD* values in
Fig. 25~a!, where the results are designated byx* (1) in the

s
s.

FIG. 22. Deviation in absolute units of the fit function for th
magnetic susceptibilityx* versus temperatureT for the spin S
51/2 antiferromagnetic~AF! alternating-exchange Heisenbe
chain, fromL5400 (d) andL5800 ~open squares! QMC data for
a50.98, 0.985, 0.99 and 0.995. The only significant deviation is
the lowest temperatureT50.01J/kB . The fit function is given in
Eqs.~56! with the parameters in Table II.



n-
F
.

f
e
r
d
-

an
fit

o
gy
tio

of
-

of
e-

sion

-

i-

er

n-

r
e

rg

PRB 61 9583THERMODYNAMICS OF SPINS51/2 . . .
figure. Althoughx* (1)(D* ,t) is exact in both the low- and
high-t limits, the results are only qualitatively correct at i
termediate temperatures, as can be seen by comparing
25~a! with the QMC and TMRG data and fit in Fig. 20
Troyer, Tsunetsugu, and Wu¨rtz51 obtained a very good fit o
x* (1)(D* ,t) to QMC x* (t) simulation data over a larg
temperature range for theS51/2 two-leg Heisenberg ladde
with spatially isotropic exchange; however, they assume
«(D* ,k) in the fit function which was later found to be in
accurate over much of the Brillouin zone.

We formulated an approximation@designated asx* (2)]
which is more accurate in the low-temperature range,
which we will use in the next section as a fit function to
our TMRG x* (t) data at lowt to extractD* (a). The func-
tion x* (2) was obtained by summing the susceptibilities
isolated dimers with a distribution of singlet-triplet ener
gaps given by our one-parameter dispersion rela
«(D* ,k) for 0<D* <1 in Eqs. ~23!, which takes into ac-
count the interdimer interactions. Thus from Eq.~8a! we
simply obtain

x* (2)~D* ,t !5
1

ptE0

p dk

31e«(D* ,k)/t
. ~60!

FIG. 23. ~a! Magnetic susceptibilityx versus temperatureT for
the spinS51/2 antiferromagnetic alternating-exchange Heisenb
chain with values of alternation parameterd from 0 to 1 as shown,
wherex is scaled by 1/J and T by J in contrast to Fig. 20. The
parameterJ5J1 /(11d) is the average of the two exchange co
stantsJ1 and J2 alternating along the chain.~b! Expanded plot at

low temperatures. Thesex* (d, t̄ ) plots were generated using ou
two-dimensionalx* (a,t) fit function which was converted to th

variables (d, t̄ ) using Eq.~16b!.
ig.

a

d

f

n

Note that we make no assumptions here about the form
the functionD* (a), since onlyD* appears in the expres
sion. Thisx* (2)(D* ,t) is exact in both the low- and high-t
limits, as isx* (1)(D* ,t), and both reproducex* (t) for the
isolated dimer (D* 51) exactly, butx* (2)(D* ,t) is more
accurate at intermediate temperatures fora&1 as shown in
Fig. 25~b!. In addition, by comparingx* (1)(D* ,t) and
x* (2)(D* ,t) with the TMRGx* (a,t) calculations at lowt,
we found that the low-t corrections to the low-t limit in Eqs.
~10! are much more accurately given byx* (2)(t) than by
x* (1)(t). We will therefore not discussx* (1)(t) further here.

At low temperatures, the approximationx* (2)(D* ,t) is
expected to accurately describe the leading-ordert correc-
tions to the low-t limit only as long as the average number
magnonsnm occupying a state near the minimum in the on
magnon band is much less than unity. Using the expres
for the boson occupation number for this case,

nm5
1

eD* /t21
, ~61!

yields t/D* 50.22 and 0.42 fornm50.01 and 0.1, respec
tively. Thus, when fitting our low-t TMRG x* (a,t) data by
the fit functionx* (2)(D* ,t) in the following section, we ex-
pect x* (2)(D* ,t) to be sufficiently accurate only fort/D*
&0.4. For this reason, our fits will be limited to this max
mum scaled temperature.

g

FIG. 24. ~a! Overview of the effective spin gapDeff* (a,t) vs
temperaturet for the S51/2 AF alternating-exchange Heisenbe
chain, derived from our TMRGx* (a,t) data using the definition in
Eq. ~59!, where a5J2 /J1 is the alternation parameter.~b! Ex-
panded plot ofDeff* (t) for a50.8 at low temperatures from~a!.
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9584 PRB 61D. C. JOHNSTONet al.
We have computedDeff(D* ,T)/D from x* (2)(D* ,t) in
Eq. ~60!, using the definition in Eq.~59!, and plot the results
vs kBT/D in Fig. 26. For the dimer (D* 51), one finds ana-
lytically that Deff(T)/D5122kBT/D to lowest order inT.

FIG. 25. Magnetic susceptibilitiesx (1) ~a! andx (2) ~b! vs tem-
perature T for the spin S51/2 antiferromagnetic alternating
exchange Heisenberg chain, calculated using two different app
mations forx* (t), respectively~see text!. Note the different scales
for the ordinates in~a! and ~b!.

FIG. 26. Effective spin gapDeff , defined in Eq.~59! and com-
puted using Eq.~60!, vs reduced temperaturekBT/D5t/D* for the
S51/2 antiferromagnetic alternating-exchange Heisenberg c
for various values ofD* [D/J1, wheret5kBT/J1. A limiting be-
havior is seen forD* →0, for which the maximum inDeff(kBT/D)
occurs atkBT/D'0.14. The linear inT behavior ofDeff(kBT/D
→0) for the isolated dimer (D* 51) is due to the identically zero
width of the one-magnon dispersion relation for thisD* value.
On the other hand, for 0,D* ,1, the initial dependence is
positive and quadratic inT, and a maximum is seen in
Deff(T)/D, which for D* &0.4 occurs at t/D* [kBT/D
'0.14 with a height of'0.5%. This height is quantitatively
consistent with the data in Fig. 24~b! derived from the
TMRG x* (t) for a50.8. Thus the weak maximum seen
that figure is not a spurious effect.

B. Fits to the low-t TMRG x* „a,t… data

We were tempted to fitDeff* (a,t) derived from the low-t
TMRG x* (a,t) data, as discussed above, to obtain the s
gaps D* (a,t). However, this procedure would hav
weighted thex* (a,t) data in an ill advised way. We there
fore decided to do conventional fits of the low-t x* (a,t)
data by the fit functionx* (2)(D* ,t) in Eq. ~60!. For a given
a, this is a one-parameter (D* ) fit function and the fits are
therefore stringent tests of both the appropriateness of th
function and the precision and accuracy of the data. Beca
the temperature dependence of the accuracy of the calc
tions is unknown except for the uniform chain data~see Fig.
19!, we assumed that all data for a givena in a given fitted
temperature range have the same accuracy. Thus in the
linear least-squares fits for eacha we minimized the square
of the relative rms deviation of the fit from the data

s rms
2 5

1

Np
(
i 51

Np @x* (2)~ t i !2x* ~ t i !#
2

@x* ~ t i !#
2

, ~62!

where Np is the number of data points fitted, which wa
usually between 250 and 1500.

Due to the presence of the spin gapD* in the exponential
of the fit function,s rms is extremely sensitive to the precis
value of D* when low-t fits are carried out. For example
close to the optimumD* fit value, a change inD* by only
0.0001 (;0.1%) can changes rms by up to;300%. Thus a
few percent accuracy in thex* (t) data at lowt is sufficient
to allow D* to be determined for a given fit to a precisio
better than 0.0001. For a givena, the obtainedD* was
found to be insensitive, typically to within'0.0002, to thet
range of the fit, as long as the maximum fitted temperat
satisfiedt/D* &0.4, consistent with the above discussion
the boson occupation number. This lack of sensitivity of t
value of the fittedD* to the precise fit range demonstrate
that the fit functionx* (2)(t) is an appropriate one. Depend
ing on thea value and thet range of the fit,s rms was typi-
cally between 0.1% and several percent.

The D* (a) values obtained from the fits are listed
Table III, together with the estimated accuracies in parent
ses. Note that a quoted accuracy is associated with variat
in D* in fits to a specific set of data for a givena over
various temperature ranges as discussed above, and doe
include possible systematic errors due to, e.g., the finite fi
number of states kept in the TMRG calculations. Also
cluded in Table III are literature data53,57,58,62which will be
compared with the present results in the next section. L
log plots of the low-t data and fits are shown in Fig. 27
where on the scale of this figure, for mosta values the data
and fit are identical~cannot be distinguished! within the fit-
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TABLE III. Spin gapsD* (d)[D(d)/J andD* (a)[D(a)/J1 for the S51/2 antiferromagnetic alternating-exchange Heisenberg ch
as determined usingT50 DMRG calculations by Uhriget al. @D* U(d) andD* U(a)] ~Ref. 62!, by Barnes, Riera, and Tennant@D* BRT(d)#

using multiprecision methods~Ref. 53!, by Augieret al. @D* A(d)# ~Ref. 58!, and by us@D* pw(d) andD* pw(a)] in the present work~pw!
from our TMRGx* (a,t) data as described in the text. TwoD values are given fora50.995 in the present work: the first~larger! value is
for the number of states kept in the calculationsm5150 at t,0.004533, whereas the second~smaller! value is for m5256 at t
.0.004533. TheD* (a) data of Barnes, Riera, and Tennant are given in Table IV. Additional literature data include those of Ladavaet al.
obtained using a Green’s function Monte Carlo technique on rings of 6 to 200 spins~Ref. 57!: D* (d) 5 0.1815~5! (d50.04), 0.2156~1!
~0.05!, 0.301~1! ~0.08!, and 0.3603~1! ~0.10!.

d a D* U(d) D* BRT(d) D* A(d) D* pw(d) D* U(a) D* pw(a)

0.0025063 0.995 0.0268~3! 0.0267~3!

0.0245~1! 0.0244~1!

0.004 0.99203 0.046~1! 0.046~2!

0.0050251 0.99 0.0404~2! 0.0402~2!

0.006 0.98807 0.058~1! 0.058~2!

0.008 0.98413 0.0685~10! 0.068~2!

0.01 0.98020 0.0785~10! 0.078~2!

0.010101 0.98 0.0667~2! 0.0660~2!

0.015228 0.97 0.0901~2! 0.0887~2!

0.02 0.96078 0.1213~1! 0.119~2!

0.020408 0.96 0.1116~4! 0.1094~4!

0.03 0.94175 0.1559~1! 0.1269 0.151~2!

0.030928 0.94 0.1506~3! 0.1461~3!

0.035 0.1485
0.04 0.92308 0.1882~1! 0.1686 0.181~2!

0.041667 0.92 0.1870~3! 0.1795~3!

0.045 0.1871
0.05 0.90476 0.2188~1! 0.2049 0.208~2!

0.052632 0.9 0.221~2! 0.2219~3! 0.2108~3!

0.06 0.88679 0.2485~1! 0.2383 0.234~2!

0.063830 0.88 0.2557~2! 0.2404~2!

0.07 0.86916 0.2770~1! 0.259~2!

0.075269 0.86 0.2887~3! 0.2685~3!

0.08 0.85185 0.3048~1! 0.282~2!

0.086957 0.84 0.3213~2! 0.2956~2!

0.09 0.83486 0.3319~1! 0.305~2!

0.098901 0.82 0.3535~2! 0.3217~2!

0.1 0.81818 0.3583~1! 0.326~2!

0.11 0.80180 0.3842~1! 0.346~2!

0.11111 0.8 0.3860~3! 0.3852~2! 0.3467~2!

0.12 0.78571 0.4095~1! 0.366~2!

0.14 0.75439 0.4589~1! 0.403~2!

0.16 0.72414 0.5066~1! 0.437~2!

0.17647 0.7 0.54468~6!

0.18 0.69492 0.5530~1! 0.469~1!

0.2 0.66667 0.5981~1! 0.4985~14!

0.25 0.6 0.706620~9!

0.33333 0.5 0.8766369~7!

0.4 0.42857 1.0052~1! 0.718~1!

0.42857 0.4 1.05865915~4!

0.53846 0.3 1.256683488~2!

0.6 0.25 1.3631~1! 0.85194~8!

0.66667 0.2 1.475349990
0.7 0.17647 1.5304~1! 0.90024~7!

0.8 0.11111 1.6917~1! 0.93985~6!

0.81818 0.1 1.720507887
0.85 0.081081 1.7705~1! 0.95701~6!

0.9 0.052632 1.8480~1! 0.97265~6!
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ted temperature range. Extrapolations of the fits to hig
and lower temperatures are also shown for comparison
the data.

VII. COMPARISONS OF THE CALCULATIONS
WITH PREVIOUS WORK

A. Spin gap

Our D* (d) spin gap data determined by fitting ou
TMRG x* (t) data by Eq.~60! are plotted in Fig. 28~a! (d),
along with the results of previous workers53,57,58,62listed in
Table III. The solid curve is the functionD* 52d3/4 in Eq.
~19b! proposed by Barnes, Riera, and Tennant~BRT!.53 The
overall behavior of the data in Fig. 28~a! is well described by
this function, but significant deviations of the data from t
curve occur as illustrated in the expanded plot ford<0.1 in
Fig. 28~b!. The error bars are included with each plotted d
point in Fig. 28~b!, except for the data of Ref. 58 which we
not available, but they are all small and not clearly seen.
values ford&0.1 are significantly smaller than those of U
rig et al.,62 where the differences are far outside the co
bined limits of error, and are larger than those of Aug
et al.58

As will be seen explicitly in Sec. VIII C below, ou
x* (d, t̄ ) fit function allowsd(T) to be determined for rea
materials by using the fit function to model experimen
x(T) data. However, if one would like to determine the sp
gapD(T) from the derivedd(T), an expression is needed fo
D(d) over the entire range 0<d<1 in order to be generally
useful and applicable. At present, the only extant expres
is that of BRT in Eqs.~19!. As seen in Fig. 28 and in Tabl
IV below, this expression is only an approximation that fi
neither BRTs’D* (a) data for 0.1<a<0.9 nor our TMRG

FIG. 27. Log-log plots of reduced magnetic susceptibilityx*
[xJ1 /Ng2mB

2 vs reduced temperaturet[kBT/J1 ~solid curves! for
spin S51/2 antiferromagnetic alternating-exchange Heisenb
chains with alternation parametersa[J2 /J1 shown in the figure,
calculated using TMRG. The corresponding fits to the lower te
perature data@kBT/D(a)&0.4# by Eq. ~60! are shown as the
dashed curves, which are extrapolated to lower and higher temp
tures in the figure. The discontinuity in the data and fit fora
50.995 att'0.0043 is due to an increase with increasingt at that
t in the number of states kept in the calculations from 150 to 2
The spin gapsD* (a)[D(a)/J1 found from the fits are given in
Table III.
r
th

a
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spin gap data for 0.8<a<0.995 to within the respective er
ror bars. To formulate a more flexible expression, we mod
BRTs’ formula to read

D* ~d![
D~d!

J
52d y(d), ~63a!

so thed-dependent powery is

y~d!5
ln@D~d!/2J#

ln d
. ~63b!

The numerical prefactor ‘‘2’’ in Eq.~63a! must be retained
in order to reproduce the exactD* (d51)52. Shown in Fig.
29~a! is a semilog plot ofy versusd for the same numerica
data as in Fig. 28. This plot@and Fig. 29~b! below# explicitly
shows, from BRTs’ data, that the exponent deviates sign
cantly from the value 3/4 even ford&1. The plot also
clearly differentiates the various numerical data for smald
by the different groups, and shows that one of our two d
points from the TMRG ford50.0025~the one derived from
m5256 data at hight) is not in agreement with the trend o

g

-

ra-

.

FIG. 28. ~a! Spin gapD/J vs alternation parameterd for the S
51/2 antiferromagnetic alternating-exchange Heisenberg ch
Our data (d) were determined by fitting our TMRGx* (t) data by
Eq. ~60! and are shown along with data of Barnes, Riera, and T
nant~Ref. 53! ~filled squares!, Uhrig et al. ~Ref. 62! (s), Ladavac
et al. ~Ref. 57! ~open squares!, and Augieret al. ~Ref. 58! ~open
diamonds!. The solid curve is the function~Ref. 53! D/J52d3/4. ~b!
Expanded plot of the data and curve in~a! for d<0.1. Error bars for
the data are not shown in~a!, but are shown in~b! for all data
except for those of Augieret al.
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TABLE IV. Prefactora and spin-gapD describing the low-temperature spin susceptibility in Eq.~70! of
the S51/2 alternating chain with alternation parametera @and d5(12a)/(11a), see Eqs.~13!#. Fit pa-
rameters given by Bulaevskii~Ref. 7! (aB , DB,Fit) that he obtained by fitting to his low-t x* (t) calculations
using Eq.~70! are shown. We obtained the actual spin gap valuesDB /J1 in Bulaevskii’s theory by numeri-
cally solving Eqs.~65! and ~66!. Also included are the accurate calculations of the spin gapDBRT /J1 by
Barnes, Riera, and Tennant~Ref. 53!, which are compared with numerical values of their approximate fo
D(a)/J1'(12a)3/4(11a)1/4 @Eq. ~19a!#.

a d aB DB,Fit /J1 DB /J1 DBRT /J1 (12a)3/4(11a)1/4

0.0 1 1 1 1 1 1
0.1 0.81818 0.980 0.995 0.946245 0.946279339 0.94630
0.2 0.66667 0.873 0.954 0.884911 0.885209996 0.88535
0.3 0.53846 0.733 0.897 0.815791 0.816844275~1! 0.81716
0.4 0.42857 0.582 0.818 0.738504 0.74106141~3! 0.74156
0.5 0.33333 0.427 0.720 0.652443 0.6574777~5! 0.65804
0.6 0.25 0.346 0.617 0.556661 0.565296~7! 0.56569
0.7 0.17647 0.224 0.484 0.449626 0.46298~5! 0.46286
0.8 0.11111 0.138 0.345 0.328631 0.3474~3! 0.34641
0.9 0.05263 0.076 0.193 0.186319 0.2098~17! 0.20878
1.0 0 0 0 0
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the remainder of our data. This data point will not be
cluded in the plot and fit to be discussed in the next pa
graph.

Our y(d) data at smalld are in agreement with both th
magnitude and trend of BRTs’ data at largerd. They(d) for
these two data sets from Fig. 29~a!, with the exception of one
of our two data points ford50.0025 just noted above, ar
plotted together on an expanded vertical scale in Fig. 29~b!
where a rather smooth behavior ofy(d) is seen over the
combined range of the two calculations 0.0025<d&1. With
the behavior in Fig. 29~b! in mind, we formulated a five-
parameter fit function for these two combinedy(d) data sets
that yields the correct limitsD* (d→0)50 andD* (d→1)
52, with the property limd→0y(d)5const, given by

y~d!5y~1!1n1tanhF ln d

m1
lnS ln d

m2
D G

1n2tanh2F ln d

m1
lnS ln d

m2
D G . ~63c!

An unweighted fit of this expression to all the data in F
29~b! yielded the parameters

y~1!50.74922, n150.00776, n2520.00685,

m153.3297, m2522.2114, ~63d!

so that

lim
d→0

y~d!5y~1!2n11n250.7346. ~64!

The fit is plotted as the solid curve in Fig. 29~b!. As can be
seen from the figure, our data are fitted to within our er
bars. In addition, when they(d) fit function in Eqs.~63c!
and ~63d! is inserted into Eq.~63a!, the predicted values o
D* (d) are in agreement with each of the values of BRT
larger d to within 0.0001, which is sufficient for modelin
experimental data. Thed50 limit of y(d) in Eq. ~64! is in
-
-

.

r

t

FIG. 29. ~a! Semilog plot vs alternation parameterd of the
exponenty5 ln(D/2J)/ ln d in the expressionD/J52 dy for the spin
gap D of the S51/2 antiferromagnetic alternating-exchang
Heisenberg chain. The data and symbol references are the sam
in Fig. 28. Each data point has an attached error bar except for t
of Augier et al. ~Ref. 58! ~open diamonds!. ~b! Expanded view of
our y(d) data (d) and those derived from the numerical spin g
data of Barnes, Riera and Tennant~Ref. 53! ~filled squares!, along
with the fit in Eqs.~63c! and~63d! to the two combinedy(d) data
sets~solid curve!.
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agreement with the theoreticaleffective value y(0)
50.72(3), which was obtained without the log correctio
term by Singh and Weihong73 from an eleventh-order dime
series expansion of the triplet dispersion relation. We w
use Eqs.~63! to computeD(T) from the experimentally de
rived d(T) for NaV2O5 in Sec. VIII C below.

In order to test the critical behavior predictionD*
5Ad2/3/u ln du1/2 in Eq. ~20!, which need only hold in the
asymptotic critical regimed→0 in contrast to the fit function
for 0<d<1 in Eqs. ~63!, in Fig. 30 is plottedD/J vs
d2/3/u ln du1/2 in the regiond&0.06 for the same data and sym
bols as in Fig. 28. A proportionality appears to be develop
in our data ford&0.005, as shown by the straight line wi
slopeA53.3 passing through the origin of the figure, su
gesting that the asymptotic critical regime begins with d
creasing d below d;0.005 (a*0.99). High-accuracy
D* (d) data ford&0.001 are needed to test this conjectu
From Fig. 30, the slope 3.3 of the line drawn is evidently
lower limit of the prefactorA within the actual asymptotic
critical regime.

B. Numerical x* „a,t… results

Barnes and Riera previously carried out exact diagon
izations of Hamiltonian~14! for S51/2 alternating chains o
length up to 16 spins using the Lanczos technique.9 Their
computedx* (t) values fora50.2, 0.4, 0.6, 0.7, and 0.8
were extrapolated to the bulk limit and the results are sho
as the symbols in Fig. 31~a!. Our fit function as in Fig. 20 for
the samea values is plotted as the solid curves in Fig. 31~a!,
which are seen to be in good overall agreement with
calculations of Barnes and Riera. The deviations of the d
of Barnes and Riera from our fit function are plotted vs te
perature in Fig. 31~b!. The average deviation of their da
from our fit function is very small for each data se
20.41, 10.33, 20.40, 20.26, and10.7931024 for a
50.2, 0.4, 0.6, 0.7, and 0.8, respectively. The absolute
deviationss rms of their data from our fit function fora
50.2, 0.4, 0.6, 0.7, and 0.8 are~in units of 1024) 1.73, 1.43,
0.73, 0.78, and 3.76, respectively. We conclude that th
data are in good quantitative agreement with our data and
with the exception of their data point fora50.8 at their
lowest temperaturet50.05.

FIG. 30. Spin gapD/J vs d2/3/u ln du1/2 obtained from the data in
Fig. 28. The straight line passes through the origin with slope 3
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C. Bulaevskii theory

Bulaevskii7 calculatedx* (t) analytically in the Hartree-
Fock approximation. He first obtained an integral equat
for the magnon spectrumE(k):

«~k![
E~k!

J1
5

1

2 FA11a222a cosk

1
C11aC22~aC11C2!cosk

A11a222a cosk
G , ~65!

C1~ t !5
1

pE0

p

dk
12a cosk

A11a222a cosk
tanh

«~k!

2t
,

~66!

C2~ t !5
1

pE0

p

dk
a22a cosk

A11a222a cosk
tanh

«~k!

2t
,

where k is measured in units of 2p/d. d[1 is the lattice
repeat distance along the chain, which is twice the aver
distance between spins. He then expressedx* (t) in terms of
«(k):

.

FIG. 31. ~a! Magnetic susceptibilityx versus temperatureT for
the spinS51/2 antiferromagnetic alternating-exchange Heisenb
chain with alternation parametera50.2, 0.4, 0.6, 0.7, and 0.8
~symbols!, calculated by Barnes and Riera~Ref. 9! using the Lanc-
zos technique. Ourx* (t) fit function as in Fig. 20~solid curves! for
the samea values is shown for comparison.~b! Deviation of the
data of Barnes and Riera from our fit function vsT.
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x* ~ t ![
F~ t !

21~11a!F~ t !
,

~67!

F~ t !5
1

2ptE0

p dk

cosh2@«~k!/~2t !#
.

At t50 andaÞ0, from Eqs.~66! we obtain

C1~a!5
1

p H ~11a!EF 4a

~11a!2G1~12a!KF 4a

~11a!2G J ,

~68!

C2~a!5
1

p H ~11a!EF 4a

~11a!2G2~12a!KF 4a

~11a!2G J ,

where K(y) and E(y) are, respectively, the complete ellipt
integrals of the first and second kinds. The dispersion r
tions versusa at t50 are obtained by inserting Eqs.~68!
into ~65! and a selection of results is shown in Fig. 32. Fro
Eqs.~65! and~68!, at t50 the spin-gapDk50(a) at k50 is
given by

Dk50~a!5
12a

2 H 11
2~12a!

p
KF 4a

~11a!2G J . ~69!

This expression gives the actual spin-gap for 0,a<0.79.
However, for 0.79&a,1, the minimum in the dispersion
relation does not occur atk50, as illustrated in an expande
plot of E(k) for a50.9 in the inset to Fig. 32. The wav
vectorkG at which the minimum spin gapDB occurs is plot-
ted versusa in Fig. 33~b!. TheDB from Bulaevskii’s theory
at t50 is plotted versusa as the solid curve in Fig. 33~a!,
and a few representative values are given in Table IV. T
predictions of Bulaevskii’s theory are in very good agre
ment with those of Barnes, Riera, and Tennant53 for a

FIG. 32. Dispersion relationsE(k) at temperatureT50 from
Bulaevskii’s theory~Ref. 7! in Eqs.~65! and~68! for ten values of
the alternation parametera. The inset shows an expanded plot ne
k50 of E(k) for a50.9.
a-

e
-

&0.3, but the agreement becomes progressively worse aa
increases further. From Eqs.~65! and~66!, E(k) is tempera-
ture dependent. In addition, in the range 0.79&a,1 for
which kGÞ0 at t50, we find thatkG depends ont, as shown

FIG. 34. The temperatureT dependence of the wave vectorkG at
which the spin-gap occurs in the triplet magnon dispersion rela
~65!, for five values of the alternation parametera.

r

FIG. 33. ~a! Energy gapD versus alternation parametera for
the S51/2 alternating chain, as calculated by Barnes, Riera,
Tennant~Ref. 53! (d) and by us using the theory of Bulaevsk
~Ref. 7! ~solid curve!. The dashed curve is a plot ofD versusa
given in Eq.~19a!. The values ofD obtained by Bulaevskii~Ref. 7!
by fitting his numerical calculations ofx(T) for 0.033<kBT/J1

<0.25 according to Eq.~70! are shown as the open squares.~b!
Wave vectorkG , at which the minimum spin gap occurs in th
magnon dispersion relation atT50, vs alternation parametera.
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in Fig. 34. From Fig. 34,kG→0 at t'0.083, 0.122, 0.131
0.125, and 0.111 fora50.8, 0.85, 0.9, 0.95, and 0.99, re
spectively.

We computedx* (t) by inserting«(k) in Eq. ~65! into
Eqs. ~66!, numerically solving the latter two simultaneou
equations forC1 and C2 at eacht, and then inserting the
resulting«(k) into Eqs.~67!. The progression ofx* (t) with
increasinga from 0.001 to 0.99 is shown in Fig. 35. A
noted by Bulaevskii,7 the values ofx* at the maxima are too
large and the temperatures at which these occur are too s
by ;5 –10%~compare Fig. 35 with Fig. 20!.

At low temperatures 0.033<t<1/4, Bulaevskii fitted
x* (a,t), calculated from Eqs.~67!, by the two-paramete
form

x* ~a,t !5
a~a!

t
e2D(a)/(J1t), ~70!

and obtained values ofaB andDB,Fit /J1 for 0<a<0.9 which
are reproduced in Table IV;DB,Fit(a)/J1 is plotted as the
open squares in Fig. 33~a!. Note that the temperature expo
nent in the prefactor to the exponential isg51, contrary to
the g51/2 in Eq.~10b! which is expected in the low-t limit
for any 1D S51/2 Heisenberg spin system with a spin g
~and with a nondegenerate one-magnon band with a p
bolic minimum!. We have confirmed that over the temper
ture range fitted by Bulaevskii, one indeed obtainsg;1 for
the best fit of Eq.~70! to numerical calculations ofx* (a,t).
We infer that the discrepancy between Bulaevskii’sg51
and the expectedg51/2 arises because the fits were n

FIG. 35. Magnetic susceptibilityx versus temperatureT for
0.001<a<0.99 as predicted by the theory of Bulaevskii~Ref. 7! in
Eqs.~65!–~67!.
all

ra-
-

t

carried out completely within the low-t limit. This issue is
discussed in more detail below.

Equation ~70! together with Bulaevskii’s table o
$aB(a),DB,Fit(a)/J1% values were subsequently used exte
sively in the analysis of experimentalx(T) data for com-
pounds exhibiting spin-Peierls transitions to determine
alternation parametera at low temperaturesT!Tc where the
experimental spin-gap is nearly independent ofT. However,
from Table IV and Fig. 33~a!, the DB,Fit(a) values of
Bulaevskii7 are in generally poor agreement with the actu
spin gapsDB(a) of his theory and with those@DBRT(a)#
calculated for the samea values by Barnes, Riera, an
Tennant.53 Therefore, one should consider theDB,Fit param-
eters as fitting parameters only, with no direct relation to
actual spin gap.

According to Eq.~8a! for x* (t) of the isolated dimer
which is a zero-dimensional spin system, the form ofx* (t)
in Eq. ~70! with g51 is correct fora50 andt→0. On the
other hand, for one-dimensional spin systems such as
two-leg spin ladder~and the alternating-exchange chain! at
temperatureskBT!D and kBT!one-magnon bandwidth
Eqs. ~10! apply, with g51/2, assuming that the triplet one
magnon dispersion relationE(k) is parabolic at the mini-
mum. In this case one expectsg51/2 at sufficiently lowt for
any finite a. Thus, in the temperature region of validity o
Eq. ~10a!, a plot of the left-hand-side of Eq.~11a! vs lnt
should give a straight line with slope2g. Shown in Fig. 36
are such plots, obtained using ourx* (a,t) calculated from
Bulaevskii’s theory as described above, fora50.001 to
0.99. Fora50.001, a crossover is clearly evident fromg
51 to g51/2 with decreasingt. The other curves also ex
hibit signs of a crossover, withg'1/2 at the lowest tempera
tures, with the exception of the curve fora50.8. For thisa
value, which is just above the valuea'0.79 at whichkG
becomes nonzero att50 @see Fig. 33~b!#, theg at the lowest
t is intermediate between the values of 1/2 and 1, and
assumption of a parabolic form forE(k) at the band mini-
mum is evidently not satisfied~see Fig. 32!. In fact, Troyer,
Tsunetsugu, and Wu¨rtz51 calculated the low-t limit of x* (t)
for 1D systems with general dispersion relation«(k)5D*

FIG. 36. Log-log plot ofx* (t)eD* (t)/t at low t versus reduced
temperaturet for 0.001<a<0.99 @see Eq.~11a!# as predicted by
the theory of Bulaevskii~Ref. 7! in Eqs.~65!–~67!.
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1c* ukaun, wherek is the deviation of the wave vector from
that at the band minimum. They found the same fo
x* (t)5(An /tg)exp(2D* /t) as for the parabolic casen52,
but whereg512(1/n). Thus, e.g.,g52/3 and 3/4 forn
53 and 4, respectively. This range ofg is consistent with
the slope of the data at the lowest temperatures fora50.8 in
Fig. 36.

The predictions of Bulaevskii’s theory forx* (t) from
Fig. 35 are compared with ourx* (a,t) fit function ~solid
curves! for a50.2, 0.4, 0.6, 0.8, and 0.99~as in Fig. 20! in
Fig. 37, where the Bulaevskii prediction for each of thesea
values is shown as the corresponding dashed curve. The
agreement between the two calculations becomes prog
sively more severe as temperature decreases and as th
form chain limit is approached with increasinga. Therefore,
the accuracies of thea and J1 values previously extracte
from experimental data at lowT for compounds witha&1
using Bulaevskii’s theory are unclear. Ourx* (a,t) fit func-
tion now provides a much more accurate and reliable me
of extracting exchange constants and spin gaps from exp
mentalx(T) data.

FIG. 37. ~a! Magnetic susceptibilityx versus temperatureT for
alternating chains witha50.2, 0.4, 0.6, 0.8, 0.9, and 0.99~solid
curves! generated using ourx* (a,t) fit function as in Fig. 20.
These are compared with the predictions of the theory of Bulaev
~Ref. 7! ~corresponding dashed curves!. ~b! Expanded plots at lowT
from ~a!.
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s-
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VIII. MAGNETIC SUSCEPTIBILITY OF NaV 2O5

Crystals of Na0.996(3)V2O5.00(6) were grown at the Max-
Planck-Institut fu¨r Festkörperforschung, Stuttgart, in a P
crucible in flowing Ar atmosphere by a self-flux metho
from a 5:1:1 mixture of NaVO3, V2O3, and V2O5.74 The
flux was dissolved by boiling the solidified melt in distille
water. X-ray powder diffraction patterns collected with
STOE diffractometer yielded the lattice parametersa
511.3187(8) Å, b53.6111(3) Å, and c54.8007(5) Å.
Chemical analyses on two independent representa
samples of the batch were performed with a standard A
analysis technique for V and Pt and ICP emission spect
copy for the Na content. The oxygen content was determi
by measuring with IR spectroscopy the amount of CO g
erated when the sample is fused in a graphite crucible
2700°C in vacuo. Platinum impurities above the level o
sensitivity of the analysis~500 ppm with respect to V! could
not be detected.

At Ames Laboratory, single crystals of NaV2O5 were
grown out of the ternary melt.74 Powders of V2O5 and V2O3

were prepared by oxidizing and reducing NH4VO3 at 600 °C
and 900 °C, respectively. The resulting V2O5 is reacted with
Na2CO3 at 550 °C yielding NaVO3. About 10 grams of
NaVO3, V2O5, and V2O3 in the molar ratio 32:1:1 were
placed in a Pt crucible and sealed in an evacuated qu
tube. The melt was then slowly cooled from 800 to 660
over 50 h and the remaining liquid was decanted. Sm
amounts of solidified melt remaining on the crystals we
dissolved with hot water. Typical dimensions of the ribbo
shaped crystals grown in this manner are 0.531.5
311 mm3 with the c axis perpendicular to the plane of th
ribbon, theb axis along the length of the ribbon and thea
axis along the width of the ribbon, with lattice paramete
a'11.303 Å,b'3.611 Å, andc'4.752 Å. The crystal de-
noted as AL1 has a mass of 8.2 mg and approximate pla
dimensions 1.532.5 mm2.

The magnetic susceptibilityx(T)[M (T)/H of the crys-
tals was measured using Quantum Design SQUID magn
meters at Stuttgart and Ames. The measurements on e
crystals of NaV2O5 in Stuttgart were carried out in a fiel
H51 T along the V ladder~b! axis direction in various tem-
perature ranges between 2 and 750 K. Measurements o
anisotropy ofx(T) along thea, b, andc axis directions were
carried out from 2 to 300 K in Ames on crystal AL1 inH
52 T.

The results for two of the crystals up to 750 K are sho
in Fig. 38. The data illustrate the variabilities we have o
served between measurements along the same axis on d
ent crystals. Above;50 K, the two data sets are nearly pa
allel, with the difference between them being'324
31025 cm3/mol; we have no explanation for this differenc
and no comments have been made in the literature a
such variabilities and/or their origins inx(T) along the same
axis in different crystals that we are aware of. The data fr
Tc'33–34 K up to 300 K are in approximate agreeme
with the single crystal data of Isobe, Kagumi, and Ue
taken in thisT range along the same axis inH55 T.74 A
variable Curie-Weiss-like contributionxCW(T) to x(T) oc-

ii
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9592 PRB 61D. C. JOHNSTONet al.
curs below;20 K which is attributed to paramagnetic d
fects, impurities, inclusions and/or intergrowths in the cr
tals. The ‘‘Fit’’ shown in the figure will be discussed later
Sec. VIII B.

The experimental data are analyzed with the general
pression

x~T!5x01xCW~T!1xspin~T!, ~71a!

x05xcore1xVV, ~71b!

xCW~T!5
Cimp

T2u
, ~71c!

xspin~T!5
Ng2mB

2

J
x* S kBT

J D , ~71d!

where x0 is the sum of a temperature independent a
~nearly! isotropic orbital diamagnetic core contribution and
usually anisotropic and temperature independent orb
paramagnetic Van Vleck contribution. We estimatexcore us-
ing the values25, 27, 24, and21231026 cm3/mol for
Na11, V14, V15, and O22, respectively,75 yielding the iso-
tropic value

xcore527.831025
cm3

mol NaV2O5
. ~71e!

The second term in Eq.~71a! is the above-noted Curie-Weis
impurity and/or defect contribution and the last term is t
intrinsic spin susceptibility, each of which may or may n
be anisotropic. For a Heisenberg spin system,x* is isotropic,
and therefore so isxspin apart from anisotropy in theg factor.
The impurity Curie-Weiss termxCW(T) can be anisotropic if
the impurities are defects or intergrowths in the cryst
which have atomic coordination principal axes which a
fixed with respect to the crystal axes rather than being r
domly oriented. We model ourx(T) data according to Eq
~71a! in terms of thex* (t) in Eq. ~71d!, which are~fit func-
tions to! theoretical susceptibility calculations presented
previous sections. Before moving on to do that, we first

FIG. 38. Magnetic susceptibilityx in a fieldH51 T parallel to
the V chains (b axis! versus temperatureT for two crystals of
NaV2O5 as indicated. The solid curve is a ‘‘Fit’’ of the data by th
theoretical prediction for theS51/2 uniform Heisenberg chain with
parameters in Eq.~76!.
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perimentally examine the anisotropy inx(T) of NaV2O5 and
its implications in the next section.

A. Anisotropy of the magnetic susceptibility

The magnetic susceptibilities of NaV2O5 crystal AL1
along thea, b, andc axes are plotted vs temperature in Fi
39~a!, where thea and c axes are perpendicular to the
chains which run along theb axis, and thec axis is perpen-
dicular to the trellis layers that the V chain/ladders reside
The data are similar to the anisotropicx(T) data reported by
Isobe, Kagami, and Ueda,74 although the anisotropies w
measure at both room temperature and at low temperat
are somewhat larger than they reported. The anisotropie
low temperatures are seen more clearly if the respective
purity termxCW(T) in Eq. ~71c! is subtracted from each dat
set, as shown in Fig. 39~b!. The impurity Curie constantCimp
and Weiss temperatureu for each direction of the applied
field were determined by the requirement thatx(T) become
independent ofT for T→0. The fitted values ofCimp were
found to be slightly anisotropic and are given in Table
below. The values ofCimp are equivalent to the contributio
of only 0.07 mol% ofS51/2 impurities withg52; if the
impurity spin is actually greater than 1/2, the concentrat
of paramagnetic impurities could be much less than this
timate. From a comparison of Figs. 39~a! and 39~b!, xCW(T)
is seen to make a negligible contribution to the measu

FIG. 39. ~a! Magnetic susceptibilityx versus temperatureT in a
field H52 T parallel (Huub) and perpendicular (Huua, Huuc) to the
V chains in NaV2O5 crystal AL1. ~b! The data in~a! corrected for
the respective Curie-Weiss contributionsxCW5Cimp /(T2u) attrib-
uted to paramagnetic defects or impurities.
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x(T) above;100 K. Since in the presence of a spin g
xspin50 at the lowest temperatures, from Eqs.~71! and Fig.
39~b! we obtain

xb
VV518.731025

cm3

mol
, xc

VV513.331025
cm3

mol
,

xa
VV520.031025

cm3

mol
~T!Tc!. ~72!

From Fig. 39~b!, the anisotropies ofx(T) are seen to be
quite temperature dependent upon heating throughTc
533.4 K. These results are surprising, becausexspin is ex-
pected to be isotropic~apart from the small anisotropy due
the anisotropicg factor!, with xspin(T→0)50 because of the
spin gap, and the anisotropicxVV values are expected to b
temperature independent for ourS51/2 system over the tem
perature range of our measurements. Thus one expect
differencexa(T)2xb(T) (a, b5a, b, c) to be nearly in-
dependent of temperature compared with the magnitud
either, where a subscript refers to the crystallographic a
along which the magnetic field is applied.

To be more quantitative, we define the anisotropy in
intrinsic susceptibility as

Dxab~T![@xa2xa
CW#~T!2@xb2xb

CW#~T!, ~73!

which eliminates extrinsic anisotropy in the Curie-Weiss i
purity contribution from the values calculated from the e
perimental data. For example, according to this definiti
Dxac(T) is the difference between the uppermost and lo
ermost data sets in Fig. 39~b!. The threeDxab(T) anisotro-
pies are plotted in Fig. 40. It seems to us that the only r
sonable explanation for the strong temperature-depen
anisotropies in Fig. 40 for two of the three data sets is t
one or more of thexa

VV susceptibilities is strongly tempera
ture dependent nearTc , contrary to our initial expectations
Such a temperature dependence may be associated wit
crystallographic and charge-ordering transitions which oc
at or near the same temperature as the spin dimerization
sition, as discussed in the Introduction.

FIG. 40. TemperatureT dependences of the intrinsic anisotrop
differencesDxab (ab5ac, bc, ab) in the magnetic susceptibili
ties along thea, b, andc axes in NaV2O5, as defined in Eq.~73!.
These data were obtained from the respective differences betw
the three pairs of data sets in Fig. 39~b!.
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One can make rather strong general statements abou
magnetic susceptibility anisotropies and their temperat
dependences as follows. Defining the Van Vleck suscepti
ity anisotropyDxab

VV5xa
VV2xb

VV and similarly the spin sus
ceptibility anisotropyDxab

spin5xa
spin2xb

spin, from Eqs. ~71!
one obtains an expression for the anisotropyDxab(T) for a
spin system in which the only anisotropy inxspin arises from
anisotropy in theg factor, given by

Dxab~T!5Dxab
VV1

NmB
2~ga

22gb
2 !

J
x* S kBT

J D . ~74!

The reduced spin susceptibilityx* ( t̄ ) is necessarily positive
and it is isotropic for a Heisenberg spin system as no
above. Thus, ifxa

VV and xb
VV and thereforeDxab

VV are inde-
pendent of temperature, the slope]Dxab(T)/]T must have
the same sign as the differencega

22gb
2 . As discussed in the

next subsection, for NaV2O5, this difference has been re
ported to be positive forab5ac andbc and near zero for
ab5ab, consistent with the slopes in Fig. 40. However, in
simple ionic crystalline electric field model and with a pos
tive spin-orbit coupling parameter for V one would pred
that axa

VV should increase with the negative deviation ofga

from the free electron valueg52. Thus, a particularly vis-
ible and puzzling discrepancy is that since (22ga)'(2
2gb),(22gc) according to the reportedga values below,
on this basis one strongly expectsxa

VV'xb
VV,xc

VV ; thus two
of the threexa

VV values should be about the same andsmaller
than the third one. Qualitatively contrary to this expectatio
for T!Tc we observe in Eq.~72! that xa

VV'xb
VV.xc

VV .
We will not emphasize or further discuss these puzzl

discrepancies with expectation with respect to their poss
influence on our theoretical modeling of ourx(T) data in
Secs. VIII B and VIII C, since at present there is no way
model, e.g., a temperature dependent Van Vleck suscep
ity which changes rapidly nearTc , but the anisotropic sus
ceptibility results and the above discussion should be kep
mind. In the following two subsections the reported anisot
pies in theg factor as measured using electron spin re
nance~ESR! and in the Van Vleck susceptibility as deduce
from nuclear magnetic resonance~NMR! measurements will
be discussed, respectively, in light of our anisotropicx(T)
data.

Anisotropy in the g factor from ESR. Many ESR measure
ments have recently been reported for NaV2O5.20,76–80Each
study found a signal withg'2 which was attributed to bulk
V species, and theg values found in the various studies we
the same within the errors, e.g.,76

ga5gb51.972~2!, gc51.938~2!. ~75!

The powder-average value isg5A(ga
21gb

21gc
2)/3

51.961(2). Theg values were found to be independent ofT
down to 20 K, which is belowTc . From all these measure
ments, there is no indication that theS51/2 Heisenberg
Hamiltonian is not appropriate to the spin system
NaV2O5. Unfortunately, given the sensitivity of the ES
technique, we cannot be certain that these ESR results
representative of the bulk spin species in NaV2O5, because
no quantitative measurements of the concentration of s
species observed in these measurements were reported

en



re
ilit
-
t

su
th

-

-

e-

n
e
r

-

in

u
re
d

bu

R
ic

a

de

in

e

e

n
e

l-

the
e

no
ree-

m-
e
ved

-
k

and

ll

em-
-

,

ey
re-

in
rally
are
d

o-

n
ith

n-
r

9594 PRB 61D. C. JOHNSTONet al.
though the~uncalibrated! ESR intensity versus temperatu
measurements approximately mirror the bulk susceptib
behavior in most~but not all! of these studies, it is still pos
sible that the signal arises from a minority spin species tha
coupled to the bulk spin system. An interesting related is
which has not been discussed in the literature is why
presumed bulkS51/2 species in NaV2O5 are observable to
low temperaturesT&0.03J/kB by ESR, where the AF ex
change constant isJ/kB;580 K ~see below!, whereas the
bulk Cu12 spins 1/2 in the high-Tc cuprates are not observ
able by ESR up to 1100 K, which is'0.7J/kB whereJ/kB
'1600 K is only a factor of 2.8 larger.4

In Ref. 21 the authors estimated thexVV values using the
reported anisotropicg values obtained from ESR measur
ments, obtainingxa

VV5xb
VV52.431025 cm3/mol and xc

VV

56.631025 cm3/mol, which were stated to be in agreeme
with the values from theirK-x analysis discussed in th
following subsection. These values do not agree with ouT
50 values in Eq.~72!. In addition, from thexVV values of
Ohama et al.,21 one obtains Dxca

VV5Dxcb
VV54.2

31025 cm3/mol, which are similar in magnitude but oppo
site in sign to our data in Eq.~72!. If the strong change in
each ofDxac and Dxbc below Tc in Fig. 40 is due to a
respectiveDxab

VV which is strongly temperature dependent
this temperature range, an effect similar to that reported
occur from NMR measurements discussed in the next s
section, it is hard to understand why this change is not
flected in a distinct change in the reported temperature
pendent anisotropy of theg values atTc if these g-value
measurements are recording the characteristics of the
phase.

Anisotropy in the Van Vleck susceptibility from NM.
From a so-calledK-x analysis using NMR paramagnet
nuclear resonance shiftK(T) data, combined withx(T)
measurements, under certain assumptionsxVV can be ob-
tained ifK is proportional tox, with T as an implicit param-
eter. In this way,xVV values have been obtained by Oham
and coworkers for NaV2O5 using 23Na ~Ref. 81! and 51V
~Ref. 21! NMR measurements on the same aligned pow
sample. The former 23Na study yielded xb

VV523
31025 cm3/mol below Tc and 1631025 cm3/mol above
Tc , corresponding to a decrease of 731025 cm3/mol atTc .
Their low temperature value is quite similar to our value
Eq. ~72!.

The 51V NMR study,21 carried out aboveTc , yielded
xb

VV52(1)31025 cm3/mol, roughly an order of magnitud
smaller than obtained in the authors’ first study~no comment
was made about this discrepancy!, and in addition gave
xa

VV51(1)31025 cm3/mol and xc
VV54(1)31025 cm3/

mol. These values are significantly smaller than our valu
We note that aK-x analysis on thed1 V14 compound VO2
yieldedxVV56.531025 cm3/mol.82

B. Modeling the susceptibility of NaV2O5 aboveTc

Turning now to the experimentalx(T) data in Fig. 38, we
haveTmax'370 K. Assuming the validity of the Hamiltonia
~1!, Eq. ~30a! for the uniform Heisenberg chain yields th
exchange constantJ/kB'580 K. Then thegb value in Eq.
~75! and ourx0 values atT50 in Table VI below, together
with Eqs. ~31! and ~70!, predict that the measuredxmax

;4031025 cm3/mol, which is similar to the measured va
y
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ues of'44 and 4831025 cm3/mol for the two crystals in
Fig. 38, respectively. We therefore proceeded to try to fit
data by the uniform chain model. The ‘‘Fit,’’ shown as th
solid curve in Fig. 38, is a plot of Eqs.~71!, with x* (t) being
the susceptibility of the uniform chain~Fit 2 above! and with
the parameters

x05831025
cm3

mol
, Cimp50,

~76!

g51.972,
J

kB
5580 K ~ ‘ ‘Fit’ ’ !.

This ‘‘Fit’’ is not really a fit, since we just set theg and J
values to those estimated above and then setx0 so that the
calculated curve is in the vicinity of the data, because
small change in the parameters can bring the theory in ag
ment with the data. It is clear that adjustingx0 further will
not improve the agreement, nor will including a nonzero i
purity Curie constantCimp . However, the shapes of the curv
and the data are similar, so the agreement can be impro
considerably~not shown! by simultaneously decreasingx0 to
'21031025 cm3/mol, which is not possible physically ac
cording to Eqs.~71! because it would require the Van Vlec
susceptibility to be negative, and increasingg to the unphysi-
cally large value of'2.4, while keepingJ constant. These
results are in disagreement with the conclusion of Isobe
Ueda who found that the Bonner-Fisher prediction1 fitted
their powder susceptibility data from 50 to 700 K very we
assumingg52.33 We can only note that theirx(T) data have
not been quantitatively reproduced in either their31,74 or oth-
ers’ subsequent measurements on NaV2O5, including ours,
and that the Bonner-Fisher prediction is not accurate at t
peratures below;J/(4kB)'145 K as discussed in the Intro
duction.

Lohmannet al.77 and Hembergeret al.79 also previously
concluded that thex(T) of NaV2O5 is not described~below
250 K! by the prediction for theS51/2 Heisenberg chain
based on their fits by the Bonner-Fisher prediction1 to their
x(T) deduced from ESR measurements up to 650 K. Th
suggested that additional exchange couplings may be
quired to explain the observedx(T). We consider this pos-
sibility here by modeling the influence of possible intercha
spin coupling. Because there are no accurate and gene
applicable numerical calculations for this case that we
aware of, we utilize the following simple molecular fiel
theory ~MFT! prediction for the spin susceptibility4,14

1

x* ~ t !
5

1

xchain* ~ t !
1

z8J8

J
, ~77!

wherexchain* (t) is the reduced spin susceptibility of the is
lated quantumS51/2 uniform Heisenberg chain~our Fit 2
above!. The parameterz8 is the effective number of spins o
other chains to which a spin in a given chain is coupled w
effective~or average! exchange constantJ8. To be consistent
with our sign convention for the intrachain exchange co
stantJ, J8 is positive for AF interactions and negative fo
ferromagnetic~FM! interactions. Equation~78! is very accu-
rate whenuz8J8/Ju!1.4,14
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We fitted thex(T) data above 50 K for the two crystals i
Fig. 38 by Eqs.~71! and~77!, where we fixedgb51.972 and
Cimp50 and allowedx0 , J and the productz8J8 to vary.
Very good fits were obtained, for which the fitting param
eters are given in Table V. The fits are plotted as the s
curves in Fig. 41. For the parameters of the two crys
taken together, the fittedJ/kB5584(9) K is the same as de
duced above~580 K! from the temperature of the maximum
in x(T), and the fittedx051.4(16)31025 cm3/mol is simi-
lar to our results at low temperatures in Fig. 39~b!. A mod-
erately large and negative~FM! interchain couplingz8J8/J
521.26(5) was obtained. This coupling is sufficient
strong that long-range magnetic ordering might be expec
but which is not observed, possibly due to magnetic frus
tion effects. If the present mean-field interchain coupli
analysis is correct, this interchain coupling should be evid
in the magnon dispersion relations observable by inela
magnetic neutron scattering measurements. Indeed, mo
ately strong dispersions of 1.4 meV in each of two ban
perpendicular to the chains have in fact been observed
Yosihamaet al.83 in such measurements on single crystals
remains to be seen whether the magnitude and sign of
interchain exchange coupling that we infer in the mean-fi

TABLE V. Fit parameters for the magnetic susceptibility of tw
NaV2O5 crystals according to Eq.~71! with Cimp50, g51.972 and
the spin susceptibilityxspin given by the molecular field theory ex
pression ~77! for coupled quantumS51/2 uniform Heisenberg
chains.

crystal

x0

S1025
cm3

molD J/kB

~K! z8J8/J

E083EF 12.8~2! 577~2! 21.28~3!

E106E 20.1~1! 592~1! 21.23~2!

FIG. 41. Fits of the magnetic susceptibilityx vs temperatureT
from 50 K to 750 K for the two crystals in Fig. 38 by Eqs.~71! with
Cimp50, g51.972 and the spin susceptibilityxspin given by the
molecular field theory~MFT! prediction~77! for coupled quantum
S51/2 uniform Heisenber chains. The fits are shown as the s
curves and the fit parameters are given in Table V. The fits ove
the data so they are difficult to see; consequently they have b
extrapolated to higher and lower temperatures to show where
are.
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analysis are consistent with the dispersion relations dedu
from the neutron scattering data.

An alternative and/or additional mechanism which c
produce a strong deviation of the measuredx(T) of a uni-
form chain compound from that predicted for Heisenbe
uniform and alternating chains is the spin-phon
interaction.54–56,84–86At low T this interaction can lead to a
spin-Peierls transition and can strongly modifyx(T) above
Tc from that expected for the Heisenberg chain.54,56Sandvik,
Singh, and Campbell carried out a detailed QMC investi
tion of a spin-Peierls model in which the spin 1/2 intera
tions were modified by the presence of dynamical~quantum
mechanical! dispersionless Einstein phonons.54 For particular
values of the spin-phonon coupling constant and phonon
quency, they found that the effective exchange constantJeff
decreases strongly with increasingT, and atT50 is about
27.3% larger than the bareJ. Perhaps surprisingly, the
found however that if the bareg factor is reduced by'7%
and the bareJ by '18% in the x* (t) predicted for the
Heisenberg model, this model was then in good agreem
with their QMC simulations for temperatures aboveTc . A
recent important extensive study of many finite-temperat
properties of the same model using QMC simulations w
carried out by Ku¨hne and Lo¨w.56 They found that for not too
low temperatures, the susceptibilities for various Einst
phonon frequencies and spin-phonon coupling constants
all be scaled onto a universal curve, given by that for
uniform Heisenberg chain, using only a suitably defined
fective exchange constantJeff.J. Contrary to the result of
Ref. 54, they found that a rescaling of theg factor was not
necessary. Our experimental results for NaV2O5 are not con-
sistent with either of these theoretical studies, because
discussed below Eq.~76! above, to force-fit the Heisenber
chainx(T) prediction onto the data requires an unphysica
large negative value ofx0, as well as an unphysically larg
increase ing.

On the other hand, our observedx(T) does not agree with
the Heisenberg chain model~with a temperature-independen
J), and in the next section we simultaneously model the d
both above and belowTc within the context of the Heisen
berg chain model with a temperature-dependentJ, where we
find that J(T) aboveTc is very similar in form to that de-
duced in the calculations of Refs. 54 and 56. Thus it may
the case that the spin-phonon interaction is indeed impor
to determiningx(T) in NaV2O5, but where the effects on
x(T) are somewhat different than calculated in the mode
In particular, the theoretical predictions may be substantia
modified if phonon spectra appropriate to real materials w
to be used in the calculations instead of dispersionless
stein phonons.

C. Simultaneous modeling of the susceptibility of NaV2O5

below and aboveTc

Previous modeling ofx(T) of NaV2O5 to extract the spin
gap has usually been done at the lowest temperatures wit
reference to the magnitude ofx aboveTc . Here we utilize
our fit to the x* (t) for the Heisenberg chain to extractJ
aboveTc from the experimental data. Clearly, since the me
suredx(T) aboveTc cannot be modeled within this frame
work using a temperature-independentJ as shown in the pre-

id
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ey
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TABLE VI. Fitted parameters in Eqs.~71!, using thex* (a,t) fit function ~50! for the alternating-
exchange chain, obtained by fitting thex(T) data in the range 2–20 K for nine crystals of NaV2O5, for an
assumedg factor of 1.972. If an arror bar is not given forJ(0), this value isJ(50 K) which was determined
from a single data point near 50 K. The spin gapD(0) is not a fitted parameter, but is rather computed fro
the fitted alternation parameterd(0) using Eqs.~63!. Similarly, the alternation parametera(0) is computed
from d(0) using Eq.~14b!. Note that all three measurements for crystal AL1 were carried out in a field
T, whereas all the other crystals were measured in a field of 1 T.

Crystal

x0

S1025
cm3

molD
Cimp

S1023
cm3 K

mol D 2u
~K!

J(0)/kB

~K! d(0) a(0)
D(0)/kB

~K!

E082E 6.82~4! 1.123~5! 0.46~1! 710~4! 0.0287~2! 0.9442~4! 101.1~10!

E083B 4.56~9! 0.81~1! 0.30~5! 654~3! 0.0327~3! 0.9366~6! 102.6~13!

E083EF 11.2~1! 1.11~1! 0.43~4! 723~2! 0.0279~4! 0.9458~8! 100.8~14!

E083G 6.55~3! 1.112~3! 0.45~1! 688 0.0298~1! 0.9421~2! 100.7~2!

E083H 4.24~3! 0.780~3! 0.33~1! 650 0.0332~2! 0.9357~4! 102.9~5!

E083I 4.18~6! 0.946~7! 0.32~2! 657 0.0329~4! 0.9363~8! 103.3~9!

E097A 5.92~3! 0.170~3! 0.25~4! 589~2! 0.0389~2! 0.9251~4! 104.6~6!

E106E 5.67~8! 0.134~8! 0.31~1! 662~2! 0.0332~5! 0.9358~9! 104.8~13!

AL1 (Huua) 12.22~6! 0.221~7! 0.46~6! 598~1! 0.0366~3! 0.9294~6! 101.5~8!

AL1 (Huub) 10.94~6! 0.240~7! 0.46~6! 607~1! 0.0352~3! 0.9320~6! 100.4~8!

AL1 (Huuc) 5.49~7! 0.298~8! 0.75~7! 635~1! 0.0337~4! 0.9348~7! 101.7~9!
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vious section, it follows that if we are to remain within th
framework,J, which is then evidently an effective exchang
constant incorporating additional physics of the mater
must be temperature dependent. Then withJ(T) fixed, we
derive theT-dependent spin gapD(T) and exchange alterna
tion parameterd(T) near and belowTc directly from the
measuredx(T) data, which has not, to our knowledge, be
carried out before for any system showing a sp
dimerization transition, using ourx* (a,t) fit function for the
alternating chain.

The specific procedure we adopted for modeling
xb(T) measurement on each crystal consists of the follow
six steps, where we fixedgb51.972 in steps 3–5.

~1! Thex(T) from 2 to 10 K is fitted by Eqs.~71!, setting
xspin50 because of the presence of the spin gap, ther
obtaining the parametersx0 , Cimp , andu.

~2! Using thesex0 , Cimp , andu parameters, we solve fo
J(T) for T>60 K, or for T550 K only, using our ‘‘Fit 1’’
function for x* ( t̄ ) of the Heisenberg chain, which is on
end-point function of ourx* (d, t̄ ) fit function, and fit the
resultingJ(T) by a polynomial inT for extrapolation below
Tc ; we used the extrapolation functionJ(T)5J(0)1aT2

1bT3.
~3! With this J(T), or usingJ(50 K) only, we fittedx(T)

from 2 to 20 K, now includingxspin(T) for the alternating-
exchange chain@i.e., using our alternating chainx* (d, t̄ ) fit
function# assuming aT-independentd ~andD), and obtain a
new set ofx0 , Cimp, andu parameters@in addition tod(0)].

~4! Steps 2 and 3 are repeated until convergence
achieved, which takes in practice only one additional ite
tion. Note that we implicitly assume thatx0, Cimp, andu are
independent ofT, i.e., that the transition~s! at Tc do not affect
them.

~5! The experimentally determined molar spin suscepti
ity xspin(T) is now computed by inserting the finalx0 , Cimp,
and u fit parameters into Eq.~71a!. Then using the fitted
l,

-

e
g

by

is
-

-

J(T) or J(50 K), thed(T) is computed using our fit function

x* (d, t̄ ) for the alternating-exchange chain by finding t
root for d, at each data point temperatureT, of

xb
spin~T!5

NAgb
2mB

2

Jb~T!
x* Fd,

kBT

Jb~T!G . ~78!

~6! In a separate step not associated with the fitting p
cedure in steps 1–5, the spin gapD(T) is computed from
d(T) determined in step 5 using an independently kno
functionD* (d)[D(d)/J and ourJ(T) or J(50 K). We used
our D* (d) fit function in Eqs.~63! for this purpose.

We measuredxb(T) for nine different crystals from four
different batches of NaV2O5 and now present illustrative re
sults obtained in each of the above modeling steps 2 t
~final iteration!, 5 and 6 for three representative crystals. W
will follow in graphical form the data modeling through su
cessive steps for these three crystals to show how differe
in one property between the crystals may or may not pro
gate through the next step~s! of the analysis, but we presen
the fitting parameters for all of the crystals in Table VI.

The measuredx(T) data below 50 K for the three crysta
are shown in Fig. 42~a!, where the fits below 20 K in step 4
are shown as the solid curves with parameters in Table
Crystals E097A and AL1 are seen to have much lower lev
of paramagnetic impurities than E083EF, as reflected in
impurity Curie constant, i.e., the magnitude of the impur
Curie-Weiss upturn at lowT. By subtracting thex0 and im-
purity Curie-Weiss terms from the data, the spin suscepti
ity xspin(T) is obtained for each crystal as shown in Fi
42~b!. These data show good consistency belowTc for the
three crystals, despite the differences in thex0 values, the
magnitudes of the Curie-Weiss impurity term and in t
x(T) aboveTc . The J(T) determined for the three crysta
in step 2 are shown up to 300 K in Fig. 43.J is found to
decrease by;10–20 % upon increasingT from 60 to 300 K,
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which whenT is scaled byJ is similar to the fractional de-
crease predicted by Sandviket al.54 due to the spin-phonon
interaction. It is noteworthy that crystal E083EF, with by f
the highest level of paramagnetic defects and/or impurit
also has the largestJ(T) and the largest change inJ with T.

Figures 44~a! and 44~b! show the spin dimerization pa
rameterd(T) and spin gapD(T) determined for each o
the three crystals in the final modeling steps 5 and
respectively. Several features of these data are of note. F
there is a rather large variation in the dimerization pa
meter,d(0)50.028–0.040, between the three crystals,
spite the fact thatTc533–34 K is nearly the same for th
different crystals; the most impure crystal E083EF has
smallestd(0), as might have been expected. Despite th
variability, thesed(0) values are all significantly smalle
than the three values reported for various samples by dif
ent groups as determined using different techniques, wh
are listed in Table VII along with other relate
information.22,27,33,36,37,40,57,76–79,81,87–89On the other hand
the corresponding range ofD(0)/kB5103(2) K for the three
crystals is fractionally much smaller than that ofd(0). We
infer that some of the discrepancies between theD(0) values
in Table VII reported for NaV2O5 by different groups may

FIG. 42. ~a! Magnetic susceptibilityx versus temperatureT for
three crystals of NaV2O5 in the low-T regime near the dimerization
transition temperatureTc'33–34 K. The crystal symbol designa
tions are E083EF (d), E097A (s), AL1 ~filled squares!. The solid
curves are fits to the data below 20 K by Eq.~71a!, where the spin
gap is assumed independent ofT, and have been extrapolated
higher temperatures.~b! Magnetic spin susceptibilityxspin(T), ob-
tained from the data in~a! by subtracting@x01Cimp /(T2u)# ap-
propriate to each crystal according to Eq.~71a!.
s,

,
st,
-
-

e

r-
h

arise from differences in, e.g., the types of measureme
which are used to determineD(0) and in the different analy-
ses of those data, rather than from differentD(0) values in
the samples. The variability ind(0) between the crystals in
Fig. 44~a!, compared with the lack of much variability in
D(0) in Fig. 44~b!, evidently arises becaused must be com-
bined withJ to obtainD, and the variations in the first two

FIG. 43. Exchange constantJ versus temperatureT for the three
crystals of NaV2O5 in Fig. 42 in the temperature regimeT>60 K
which is above the dimerization temperatureTc'34 K. The solid
curves are polynomial fits to the data between 60 and 150 K for
respective samples, which are extrapolated toT50 as shown.

FIG. 44. Alternation parameterd ~a! and spin gapD ~b! versus
temperatureT below 50 K for the three crystals of NaV2O5 in Fig.
42. The nonzerod and D above the transition temperatur
;33–34 K are presumed to arise from spin dimerization fluct
tions and concurrent spin gap fluctuations, respectively.
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TABLE VII. Exchange constantJ, spin gapD, and alternation parameterd for NaV2O5 at the tempera-
ture~s! T as determined by the listed method for the sample with transition temperatureTc . The literature
reference is given in the last column. Method abbreviations:x, magnetic susceptibility; Neutrons, neutro
scattering; NMR, nuclear magnetic resonance; ESR, electron spin resonance;Cp , specific heat; Raman
Raman light scattering.

sample Tc ~K! J/kB ~K! T~K! D/kB ~K! d Method Ref.

Powder none 529 350 x 87
Powder 33.9 560 35–700 x 33
Powder 35.3 7 114 Neutrons 36
Aligned powder 10–20 98 23Na NMR 81
Crystals 33 441 2–30 85~15! x 37
Crystal 35 560 2–34 92~20! 0.10~2! ESR,x 76
Crystal 33.5 560 15–30 100~2! 0.107 ESR 77
Crystal 34 578 250–650 100 ESR,x 79
Crystal 32.7,33.0 1.8–12 84~10! Cp 40
Crystal 5 88~2! Raman 27
Crystal 35 10–35 85~20! ESR 78
Crystal 34 455 15 0.047 Raman 57
Crystal 4.2 94 ESR 88
Crystals 33 7–15 67~5! Cp 89
Aligned powder 34.0 11–20 108 51V NMR 22
Powder 34.0 491 4–30 77 x 20
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parameters must largely cancel. Thus, not surprisingly,
low-T xspin(T) is governed by the spin gapD and not byd
or J separately.

The d(T) data for our best crystals show very sha
nearly vertical increases with decreasingT at Tc . We cannot
extract a precise critical exponentb from ourd(T) data due
to the large temperature-dependent background aboveTc , to
be discussed shortly. However, rough fits belowTc by the
expressiond(T);(12T/Tc)

b gaveb values consistent with
the valuesb50.25(10) ~Ref. 90! from infrared reflectivity
measurements, 0.34~8! ~Ref. 91! from sound velocity mea-
surements along the chain axis and 0.35~8! ~Ref. 40! from
thermal expansion measurements along that axis. We
that these values are a factor of two larger than the valu
;0.15 ~Ref. 92! inferred from x-ray diffuse scattering mea
surements.

The data in Figs. 44~a! and 44~b! clearly show the exis-
tence of spin dimerization fluctuations and a spin pseudo
aboveTc for each crystal, respectively, irrespective of t
crystal quality as judging from the Curie-Weiss impuri
term in the low-T x(T), with magnitudes just aboveTc of
about 20 and 40 % ofd(0) andD(0), respectively. This is a
robust result, which was obtained for each of the nine cr
tals we measured, which does not depend on the pre
value of J @and resultantxspin(T,d50)] or the details of
how J is determined aboveTc , or even on the detailed for
mulation of the x* (a,t) fit function for the alternating-
exchange chain. For example, settingJ to be a constant
equal to the value at 50 K, yields nearly the sameD(T) near
Tc as determined using aT-dependentJ. Similarly, deleting
the impurity Curie-Weiss term in the fit to the data aboveTc
changes the derivedx0 and J(T) or J ~50 K! somewhat as
well as the detailed temperature dependence of
pseudogapD(T) above Tc but has little influence on the
magnitude ofD nearTc . Further, in a previous version of th
e
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te
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e

QMC and TMRGx* (a,t) fit function ~not otherwise dis-
cussed in this paper!, we did not enforce the requirement~iii !
in Sec. IV E that the transformedx* (d, t̄ ) satisfy
]x* (d, t̄ )/]dud5050, and the same fluctuation effects abo
Tc were found using that fit function as using the pres
one, although these fluctuations were somewhat reduce
magnitude compared to the present results. Finally, th
fluctuations are observable directly in the measuredx(T)
data in Fig. 42~a! as a rounding of the susceptibility curve
aboveTc .

From Fig. 44, the fluctuation effects persist up to hi
temperaturesT.50 K, although the fluctuation amplitude
decrease with increasingT. Precursor effects aboveTc have
been reported in x-ray diffuse scattering measurements92 up
to ;90 K, in ultrasonic sound velocity91 and optical
absorption24,25,93measurements up to;70 K, and in specific
heat measurements79,94up to;40–50 K, so it is not surpris-
ing that spin dimerization parameter fluctuations in F
44~a!, and a spin pseudogap in Fig. 44~b! reflecting fluctua-
tions in the spin gap, are found aboveTc .

D. Specific heat of NaV2O5

In order to correlate the magnetic effects discussed ab
in NaV2O5 with thermal effects, we have carried out speci
heat vs temperatureCp(T) measurements on the same crys
AL1, and a crystal E097 from the same batch as E097A,
which x(T) data were presented and modeled above. T
results from 2 K to 50 K for crystals E097 and AL1 are
shown in Fig. 45~a!. Over this temperature range, theCp(T)
data for the two crystals agree extremely well, except in
range 33.0–34.2 K, i.e., in the vicinity of the transitions
will be discussed shortly. The shapes of the specific h
anomalies atTc are not mean-field-like specific heat jumps
observed in, e.g., conventional superconductors, but ins
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are l-shaped anomalies. Thus, any attempt to defin
~mean-field! ‘‘specific heat jump atTc’’ is fraught with am-
biguity. These shapes are retained in plots ofCp(T)/T vs T
as shown in Fig. 46~a!. This l shape has been observe
previously, and variously attributed to fluctuation effects o
possible smeared-out first order transition. In view of t
coupled structural, charge-ordering and spin dimerizat
transitions atTc in NaV2O5 as discussed in the Introduction
their relative contributions to the specific heat anomalies
not clear, if indeed their contributions can be uniquely d
tinguished.

Expanded plots ofCp(T) andCp(T)/T versusT, shown in
Figs. 45~b! and 46~b!, respectively, reveal a sharp high pe
at 33.4 K for crystal AL1, which is slightly split by'0.1 K

FIG. 45. ~a! Specific heatCp vs temperatureT for NaV2O5

crystals E097 and AL1.~b! Expanded plots of the data in the vicin
ity of the transition temperatures of the two crystals.~c! Tempera-
ture derivative ofxT vs T for the same crystal AL1 as in~a! and~b!
plus data for crystals E097A~from the same batch as E097! and
E106E. The lines connecting the data points are guides to the
a

a
e
n

re
-

in spite of the fact that the overall height of the anomaly
much larger than previously reported for any crystal
NaV2O5. Two peaks are also observed for crystal E097,
33.4 K and 33.8 K, which are more widely separated than
crystal AL1. From Fig. 46~b!, the entropy under the anoma
ly~ies! for each crystal is about the same~see below!. Com-
paring these results with thed(T) andD(T) data in Fig. 44,
the larger splitting of theCp(T) peak for crystal E097 doe
not result in any major difference in the magnetic order p
rameter properties between the two crystals, although
transition onset is slightly rounded for crystal E097A com
pared to AL1. By using the Fisher relation,50 ]@x(T)T#/]T
;C(T) whereC(T) is the magnetic contribution to the spe
cific heat, one obtains results which show the same feat
near Tc as does the specific heat, as shown in Fig. 45~c!.
Thus, careful scrutiny of the magnetic properties can rev
the fine detail observed in the specific heat nearTc . In par-
ticular, this comparison suggests that both anomalies in
specific heat nearTc for each crystal are associated wi
and/or reflected by magnetic effects.

The splitting of the transition into two apparent transitio
that we report here was previously observed in thermal
pansion, but not seen in their specific heat, measuremen
a crystal by Ko¨ppenet al.40 The detailed origin of the tran
sition splitting, and more fundamentally whether the splitti
is instrinsic to ideal crystallographically ordered NaV2O5,
remain to be clarified. An essential feature that any expla

e.

FIG. 46. ~a! Specific heatCp divided by temperatureT versusT
for NaV2O5 crystals E097 and AL1.~b! Expanded plots of the data
in the vicinity of the transition temperatures of the two crystals. T
lines connecting the data points for crystal AL1 are guides to
eye.
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tion must account for is that the temperature splitting
tween the two transitions in a crystal varies from crystal
crystal.

Modeling. In this section we will only consider the mode
utilized above for analyzing ourx(T) data, in which
NaV2O5 consists, effectively, of isolatedS51/2 uniform or
~below Tc) alternating-exchange Heisenberg chains, wh
the ~average! exchange constantJ shows, at most, only a
smooth and relatively small change belowTc . For reasons
which will become clear below, unfortunately we cannot u
our specific heat data to extract detailed information ab
the magnetic subsystem in NaV2O5. However, other types o
important information about the thermodynamics will be d
rived using various of the theoretical results presented
discussed previously in this paper.

There have been two reports40,89 deriving the spin gap
from Cp(T) data atT&15 K. We first discuss the limits o
this type of analysis. UsingJ(0)/kB5600 K, d(0)50.040
andD/kB5100 K ~see Table VI!, Eqs.~29b! and ~29c! pre-
dict that the magnetic specific heatC(T) in the dimerized
phase at low temperaturesT!(D/kB ,Tc) is

C~T!51.0
J

mol K S 100

T D 3/2F11
T

100
1

3

4 S T

100D
2Ge2100/T,

~79!

with T in units of K. Equation~79! predicts thatC(15 K)
50.026 J/mol K, which is about 40 times smaller than t
observedCp(15 K)'1 J/mol K ~which must therefore be
due to the lattice contribution! and hence is unresolvable
such low temperatures. Within this model, we must theref
conclude that the previous estimates of the spin gap ba
upon modeling the low temperature specific heat were m
likely artifacts of modeling the lattice specific heat. This c
happen if one does not utilize the fact that the prefacto
the activated exponential term of the magnetic contribut
C(T) is not an independently adjustable parameter, bu
rather determined by the spin gap itself as we have pr
ously demonstrated and emphasized in Sec. II C 3.

A related question is whether the entropy associated w
the transition~s! at Tc can be associated solely with the ma
netic subsystem. The minimum possible estimate of the
tropy of the transition is obtained from theCp(T)/T vs T
data in Fig. 46~b! by drawing a horizontal line from the dat
at theCp(T)/T minimum at'35.0 K, just aboveTc , to the
data that the line intersects with belowTc at '30.6 K, and
then computing the area between the line and the pea~s!
above the line. In this way we obtain a value of 0.397 J/m
K for crystal E097 and 0.375 J/mol K for crystal AL1. On th
other hand, the maximum magnetic entropy of theS51/2
uniform chain subsystem atTc , usingJ/kB5600 K andTc
534 K, is S(Tc)'(2R/3)(kBTc /J)50.31 J/mol K. Thus,
the specific heatl anomaly atTc cannot arise solely from the
magnetic subsystem, since the minimum possible entrop
the transition is significantly greater than the maximum p
sible magnetic entropy atTc . At the least, the remaining
entropy must therefore be due to the crystallographic an
charge-ordering transitions which occur at or close to
spin dimerization transition temperature as discussed in
Introduction.
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A potentially definitive and effective way to proceed fro
this point would be toquantitativelydetermine the magnetic
contributionC(T) to the measured specific heatCp(T) from
x(T) at and nearTc , using a relationship betweenx(T) and
C(T) such as the Fisher relation cited above, and then c
pare this result withCp(T). From a comparison of Figs
45~b! and 45~c!, it seems clear that such a relation must ex
at least for temperatures nearTc , but the relationship be-
tweenx(T) andC(T) near spin dimerization transitions ha
not yet been worked out theoretically.

In the absence of such a formulation, we proceed to e
mate thechangein the specific heat associated with the tra
sition~s!. In order to do this modeling, we must fitCp(T) to
higher temperatures than we have been discussing so far
Cp(T) data from 2 to 100 K for NaV2O5 crystal E097 are
shown as the open circles in Fig. 47. As noted above, exc
in the immediate vicinity ofTc the Cp(T) data for crystal
AL1 are nearly identical with those for crystal E097 up to
least 50 K, so it will suffice to model the data for cryst
E097. The four modeling steps and the assumptions we
ployed are as follows.

~1! We assume that critical and other order parame
fluctuations associated with the transition~s! at Tc make a
negligible contribution toCp(T) over some specified high
temperature (T@Tc) range. By subtracting the known mag
netic contributionC(T) due to isolated Heisenberg chain
@obtained using our fit function forC(kBT/J)] in this tem-
perature range, we obtain the background lattice contribu
Clat(T) in the high temperature region. Also, since we ha
shown thatC(T) is negligible for T&15 K, the measured
Cp(T) in this T range is assumed to be identical toClat(T) at
these temperatures~we again neglect the possible but u
known specific heats associated with possible order par
eter fluctuations in this range!. Thus we obtain background
lattice specific heatsClat(T) in high and low temperature
ranges which are assumed unaffected by the transition~s! and
associated order parameter fluctuations.

~2! We interpolate between theClat(T) determined in step
1 in the low- and high-temperature ranges to obtain, in

FIG. 47. Measured specific heatCp vs temperatureT up to 100
K for NaV2O5 crystal E097 (s). The solid curve is the backgroun
specific heat, which is the specific heat that would have been
served had no transitions or order parameter fluctuations occu
determined as described in the text.
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intermediate temperature range, whatClat(T) would have
been in the absence of the transition~s! and associated orde
parameter fluctuations.

~3! We add theC(T) for isolated chains, used in step
back to theClat(T) derived in step 2 over the full temperatu
range of the measurements. This is the total background
cific heat that would have occurred in the absence of
transition~s! and associated order parameter fluctuatio
Then we subtract the total calculated background spe
heat from the measuredCp(T) data. This differenceDC(T)
should hopefully be a reasonable estimate of the chang
the specific heat associated with the transition and order
rameter fluctuations, including all lattice, charge, and s
contributions.DC(T) must go to zero, by construction, a
temperatures above the lower end of the high tempera
region fitted in step 2.

~4! Finally we integrateDC/T with T up to and beyondTc
to obtain the change in entropyDS(T) associated with the
transition and order parameter fluctuations.DS(T) must be-
come constant, by construction, at temperatures above
lower end of the high temperature region fitted in step 2.

In the following we will present and discuss the results
each of the four steps of our modeling program descri
above.

Step 1. Here we first use ourC(T) fit function for the
numericalC(T) data,5 which was given in Eqs.~54!, to ex-
tract Clat(T) in the high-temperature region aboveTc . For
consistency with our analysis of the susceptibility in S
VIII C, we use the temperature-dependentJ(T) derived in
that section for crystal E097A~see Fig. 43! when computing
C(T). The backgroundC(T) thus estimated for crysta
E097, i.e., the values which would have been observed i
transition~s! at Tc or associated order parameter fluctuatio
had occurred, is shown in Fig. 48. Comparison of these d
with the measuredCp(T) data in Figs. 45 and 47 shows th
this C(T) is a small, but non-negligible (*1%), fraction of
Cp(T) aboveTc . On the other hand,C(T) is much larger
than the observedCp(T) at low temperatures, because in th

FIG. 48. Magnetic specific heatC vs temperatureT for NaV2O5

crystal E097, calculated for uniform chains with exchange cons
J(T) determined from the analysis of the susceptibility data
crystal E097A. The values are those which are assumed to
been observed had no transitions or associated order paramete
tuations occurred.
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temperature rangeC}T whereasCp(T)[Clat(T)}T3. The
Clat(T)5Cp(T)2C(T) in the high temperature~60–100 K!
region is shown in Fig. 49, together withClat(T)[Cp(T) in
the low temperature~2–15 K! region.

Step 2. In this step we must interpolateClat(T) between
the low- and high-temperature regions, i.e., in a broad te
perature range spanning the transition region. The best
to do this would be to determineClat(T) directly fromCp(T)
measurements on a suitably chosen reference compound
such measurements have not yet been done. At first sig
physically realistic possibility might be to interpolate the lo
and high temperatureClat(T) data using the Debye specifi
heat function; however, this method is questionable beca
the Debye temperatureQD in real materials can be rathe
strongly temperature dependent within the temperature ra
of interest here. The Debye function for the molar latti
specific heat at constant volumeCDebye(T) is given by95

CDebye~T!59rRS T

QD
D 3E

0

QD /T x4ex

~ex21!2
dx, ~80!

wherer is the number of atoms per formula unit (r 58 here!
and R is the molar gas constant. We attempted to fit o
Clat(T) data for the temperature ranges 2–15 K and 40–
K to 80–100 K by Eq.~80!. The fits parametrized the dat
very poorly. We obtained a more reasonable fit by allowinr
to be a fitting parameter, yielding a fitted valuer'4, but the
data were still poorly fitted, due to too much curvature in t
Debye function in the high temperature region. Therefo
we were led to interpolating between the low- and hig
temperature regions using a simple polynomial interpolat
function.

To obtain the background lattice specific heat interpo
tion function, we fitted the combinedClat(T) data~a total of
141 data points! in the low and high temperature range
2–15 K and 60–101 K, respectively, by polynomials of t
form

nt
r
ve
uc-

FIG. 49. Background lattice specific heatClat vs temperatureT
for NaV2O5 crystal E097 (s). The data shown, in the temperatu
ranges 2–15 K and 60–101 K, were fitted by a polynomial; t
interpolation fit is shown as the solid curve. This background,
cluding the curve in the interpolated temperature region, is the
tice specific heat assumed to have been observed had no trans
or associated order parameter fluctuations occurred.
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Clat~T!5 (
n53

nmax

cnTn. ~81!

The minimum summation indexn53 is set by the expecte
Debye low-temperatureT3 behavior of the lattice specific
heat. The maximum valuenmax was varied to see how the fi
parameters and variance changed. In addition, for chec
the final fits we fitted theClat(T) data in the 2–15 K low-T
range together withClat(T) data in a high-temperature rang
varying from 40–101 K to 90–101 K. We found that th
most stable fits were fornmax57 and 8. For both values, th
fit did not visibly change when the lower limit of the upp
temperature range of the fitted data was varied from 60 to
K. We chose to use the fit fornmax57 because in this cas
the fit was also stable for lower limits of 50 and 80 K. Th
stability allows one to be confident that the interpolation
the fit between the fitted low- and high-temperature range
an accurate representation of the background lattice spe
heat in the interpolated intermediate temperature range.
fit for the temperature ranges 2–15 K and 60–101 K
shown as the solid curve in Fig. 49. The absolute rms de
tion of this fit from the fitted data is quite small,s rms
50.046 J/mol K. The curve over the full temperature ran
2–101 K represents the background lattice specific h
Clat(T) expected in the absence of any transitions or or
parameter fluctuations.

Step 3. Adding the magnetic background specific he
contribution C(T) obtained in step 1 to the lattice bac
ground specific heat contributionClat(T) obtained in step 2
gives the total background specific heat, which is plotted
the solid curve in Fig. 47. We reiterate that this backgrou
is interpreted as the specific heat that would have been
served had the transition~s! at Tc and associated order param
eter fluctuations not occurred. The differenceDC between
the measuredCp(T) and the total background specific heat
plotted versus temperature in Fig. 50~a!. As would have been
qualitatively anticipated,DC is negative below about 16 K
due to the loss of magnetic specific heat at low temperat
arising from the opening of the spin gap atTc . This negative
DC does not arise from a problem in our polynomial inte
polationClat(T) fit function or from ourC(T) function; these
functions are both positive for allT.0. Since the magnetic
background contribution is proportional toT and the lattice
background contribution@which is assumed not to chang
below 15 K due to the occurrence of the transition~s!# is
proportional toT3 at low T, opening a spin gap atTc must
necessarily lead to a negativeDC at sufficiently low tem-
peratures since the magnetic contribution then becomes
ponentially small there.

Step 4.Finally, we can compute the changeDS in the
total entropy of the system versus temperature due to
transition~s! and associated order parameter fluctuations
integrating DC(T) from step 3 according toDS(T)
5*0

T@DC(T)/T#dT. The result is shown in Fig. 50~b!. The
entropy change is negative below about 22 K, due to the
of magnetic entropy at low temperatures associated with
loss of magnetic specific heat as just discussed. From
servation of magnetic entropy, this lost entropy must re
pear at higher temperatures.

By construction, step 2 requires thatDC(T.60 K)50
g
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and consequentlyDS(T.60 K)5const. This requirement is
not desirable, but we had to enforce it to ensure that
DC(T) and DS(T) derived at lower temperatures were a
curate. Since the effects of the order parameter fluctuat
are likely to continue to be present at temperatures hig
than 60 K, theDC(T) and DS(T) at temperatures at an
near 60 K in Fig. 50 are lower limits.

The net change in the entropy at 60 K in Fig. 50~b! due to
the occurrence of the transition~s! at Tc'34 K and associ-
ated order parameter fluctuations above and belowTc is
DS(60 K)52.28 J/mol K. This is far larger than the max
mum possible changeDSmag

max50.556 J/mol K in the mag-
netic entropy at this temperature obtained from Fig.
where this value is just the maximum possible entropy of
magnetic subsystem at this temperature, confirming
qualitative conclusion above based on very rough argume
In particular, our quantitative analysis indicates that at le
76% of the entropy change at 60 K must arise from
lattice and charge degrees of freedom, and only a minor f
tion (,24%) from the magnetic degrees of freedom. Sim

FIG. 50. TemperatureT dependence of the change in the sp
cific heatDC ~a! and in the entropyDS ~b! in NaV2O5 crystal E097
due to the transition~s! at Tc'34 K as well as to crystallographic
magnetic, and charge order parameter fluctuations associated
this ~these! transition~s!. The occurrances of negativeDC andDS
values at low temperatures are real effects due to loss of mag
specific heat and magnetic entropy, respectively, at these temp
tures due to the opening of the spin gap atTc . By construction,
DC(T.60 K)50 andDS(T.60 K)5const. The actual order pa
rameter fluctuation effects likely extend to temperatures higher t
60 K.
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larly, at Tc533.7 K, we obtain DS51.38 J/mol K and
DSmag

max50.311 J/mol K, yieldingDSmag
max/DS<23% atTc.

As a closing remark for this section, it is clear from Fi
50 and the discussion in the above two paragraphs thatDC
andDS do not saturate to their respective high temperat
limiting values until a temperature of at least 60 K
reached, which is almost twiceTc . The present analysis o
the thermal behavior of NaV2O5 thus lends strong support t
our independent analysis and interpretation of our magn
susceptibility data for this compound in Sec. VIII C.

IX. SUMMARY AND CONCLUDING DISCUSSION

We have shown that the high-accuracy numerical Be
ansatz calculations of the magnetic susceptibilityx* (t) for
the S51/2 uniform Heisenberg chain by Klu¨mper and
Johnston5 are in excellent agreement with the theory
Lukyanov6 over 18 decades of temperature at low tempe
tures. An independent high precision empirical fit to the
data was obtained over 25 decades of temperature which
found useful to determine the accuracy of our TMRGx* (t)
calculations. The magnetic specific heat data5 for the uniform
chain at very low temperatures was also compared with
theoretical predictions of Lukyanov, and extremely go
agreement was found over many decades in temperature
formulated an empirical fit function for these data which
highly accurate over a temperature range spanning 25 or
of magnitude; the infinite temperature entropy calculated
ing this fit function is within 8 parts in 108 of the exact value.
We used both of the above fit functions to model our resp
tive experimental data for NaV2O5 in later sections of the
paper. We expect that they will be useful to other theor
and experimentalists as well.

We have carried out extensive QMC simulations a
TMRG calculations ofx* (a,t) for the spinS51/2 antifer-
romagnetic alternating-exchange Heisenberg chain for
duced temperaturest[kBT/J1 from 0.002 to 10 and alterna
tion parametersa[J2 /J1 from 0.05 to 1, whereJ1 (J2) is
the larger ~smaller! of the two alternating exchange con
stants. An accurate global two-dimensional (a,t) fit to these
combined data was obtained, constrained by the fitting
rameters for the accurately knownx* (t) for thea parameter
end points, the dimer (a50) and the uniform chain (a
51), resulting in an accurate fit function over the ent
range 0<a<1 of the alternation parameter. Our fit functio
incorporates the first four terms of the exact hig
temperature series expansion in powers of 1/t, which allows
accurate extrapolation to arbitrarily high temperatures. T
function should prove useful for many applications includi
the modeling of experimentalx(T) data as we have shown

Our x* (a,t) fit function for the alternating chain can b
easily transformed~as we have done! into an equivalent fit
functionx* (d, t̄ ) in the two variablesd[(J12J2)/(2J) and
t̄[kBT/J, where the average exchange constant isJ5(J1
1J2)/2. This is a more appropriate function for analyzin
experimentalx(T) data forS51/2 Heisenberg chain com
pounds showing dimerization transitions~such as a spin-
Peierls transition! which result in an alternating-exchang
chain with a small value ofd at low temperatures. OnceJ
has been determined by fitting our function ford50 to the
e

ic

e

-
e
we

e

e

ers
s-

c-

s

d

e-

a-

-

is

experimentally determined spin susceptibilityxspin(T) data
above the transition temperature, the alternation parametd
is uniquely determined by our fit function at each tempe
ture below the transition temperature from the value ofxspin

at that temperature. One can then find the spin gapD(T)
using an independently knownD* (d).

Our QMC and TMRG data and fit forx* (a,t) are in
good agreement with previous calculations based on e
diagonalization of the nearest neighbor Heisenberg Ham
tonian for short chains witha50.2, 0.4, 0.6, 0.7, and 0.8
extrapolated to the thermodynamic limit, by Barnes a
Riera.9 However, the numerical and analytical theoretic
predictions of Bulaevskii,7 which have been used extensive
in the past by experimentalists to model theirx(T) data for
weakly dimerized chain compounds, are found to be in p
agreement with our results and should be abandoned for
use in favor of our fit function. Similarly, the previously use
fit function96 for the Bonner-Fisher calculation ofx* (t) for
the uniform chain (a51) should be replaced by one of ou
two fit functions for the most accurate calculation to date5 of
x* (t) for the uniform chain.

An important theoretical issue in the study of the altern
ing exchange chain is how the spin gapD* (d) evolves as the
uniform chain limit is approached (d→0, a→1). We for-
mulated a fit function for the temperature dependence of
TMRG susceptibilityx* (a,t) calculations at low tempera
tures, which was used to extract the dependenceD* (d) in
this regime. We find that the asymptotic critical regime is n
entered until, at least,d&0.005 (a*0.99). We compared
our spin gap data with many literature data. We formulate
fit function for our spin gap data together with those of Ba
nes, Riera, and Tennant53 which quite accurately covers th
entire range 0<d<1.

In the remainder of this paper, we showed how the ab
theoretical results could be used to obtain detailed inform
tion about real systems. As a specific illustration, we carr
out a detailed analysis of our experimentalx(T) and specific
heatCp(T) data for NaV2O5 crystals. This compound show
a transition to a spin dimerized state below the transit
temperatureTc'34 K. We used one of our twox* (t) fit
functions for the uniform Heisenberg chain to model t
x(T) aboveTc , where we found that the experimentalx(T)
is not in quantitative agreement with the prediction for t
uniform Heisenberg chain. A model incorporating a mea
field ferromagnetic interchain coupling between quantumS
51/2 Heisenberg chains fits the experimental data very w
with reasonable parameters. It remains to be seen whe
the inelastic neutron scattering measurements of the mag
dispersion relations83 are consistent with our derived intra
chain and interchain exchange constants.

In an alternate description, we modeled the deviation
the measuredx(T) of NaV2O5 above 60 K.Tc from the
Heisenberg chain model~with fixed exchange constantJ) as
due to a temperature-dependentJ. We found that thisJ de-
creases with increasingT up to 300 K in a manner very
similar to Jeff(T) predicted by Sandvik, Singh, an
Campbell54 and Kühne and Lo¨w56 for the spin-Peierls chain
Our J(T) cannot however be compared directly with the
Jeff(T) because the two quantities are defined differen
They found that by defining an appropriate effective e
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change constant Jeff , their resulting susceptibility
x(kBT/Jeff) is universal at the higher temperatures for va
ous Einstein phonon frequencies and spin-phonon coup
constants. This function agrees well with thex(kBT/J) for
the S51/2 AF uniform Heisenberg chain at these tempe
tures. As we discussed, thesex(T) calculations are not ap
plicable to NaV2O5, possibly because the calculations do n
incorporate realistic phonon spectra.

Below Tc , we used theJ(T) extrapolated from above 6
K and our globalx* (a,t) fit function for the alternating
Heisenberg chain to determine the temperature-depende
ternation parameterd(T), and then the spin gapD(T) from
d(T), directly from thex(T) data. We find that theD(0)/kB
values for nine single crystals of NaV2O5 are in the range
103~2! K. This result is in agreement, within the errors, wi
many previous analyses of data from various types of m
surements for this compound by other groups. However,
values of d(0)50.034(6) for various crystals are signifi
cantly smaller than previous estimates. We note that the
estimates withd(0)'0.1 in Table VII were obtained using
Bulaevskii’s theory7 for the alternating-exchange chai
which we have shown is not accurate at low temperature
the relevant alternation parameter range.

The dispersion of two one-magnon branches perpend
lar to the chains observed in the neutron scattering meas
ments has been recently explained quantitatively by G
and Valenti assuming that a zig-zag charge ordering tra
tion occurs atTc .44 They also predict thatd(0);0.034. This
is within our range ofd(0) values in spite of the fact that w
assumed thatJ(T) is either constant or increases slight
with decreasingT belowTc , contrary to their prediction tha
J decreases belowTc . Gros and Valenti made no prediction
for x(T), d(T), D(T) or C(T), so comparisons with ou
results for these quantities are not possible. We note
Klümper, Raupach, and Scho¨nfeld85 obtained a good fit to
the x(T) data below Tc for the spin-Peierls compoun
CuGeO3 within the context of a spin-Peierls model contai
ing frustrating second-neighbor interactions and static s
phonon coupling.

We discovered thatD(T) @andd(T)] of NaV2O5 does not
go to zero atTc , indicating the existence of a spin pseudog
aboveTc with a large magnitude just aboveTc of '40% of
D(0); the pseudogap is present up to at least 50 K with
magnitude decreasing with increasingT aboveTc . To our
knowledge, this pseudogap has not been reported previo
and there are as yet no theoretical predictions for the ma
tude or temperature dependence of this pseudogap.
pseudogap is strongly reminiscent of the spin pseudogap
rived by one of us usingx(T) measurements above the tra
sition temperature of inorganic quasi-one-dimensio
charge density wave compounds,97 as predicted theoretically
by Lee, Rice, and Anderson98 long before those observation
ve
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were made. Similar to that case, in the present system
may think of the pseudogap as the rms fluctuation in the s
gap aboveTc , with an associated reduction in the magn
density of states at low energy. In this interpretation,
pseudogap in NaV2O5 should be observable in high resolu
tion quasielastic neutron scattering and other spectrosc
measurements probing the low energy magnetic excitatio

Finally, we carried out an extensive modeling study of o
specific heat data for NaV2O5 crystals, using the same mod
that we used to analyze our susceptibility data. The m
important part of this study is that we have been able
determine a limit on the relative contributions of the ma
netic and lattice/charge degrees of freedom to the entr
associated with the transition~s! at Tc . We find that at least
83% of the change in the entropy atTc must arise from the
lattice and/or charge degrees of freedom, to which the s
degrees of freedom must of course be coupled, and tha
spin degrees of freedom themselves contribute less than
of this entropy change. Our results also indicate that or
parameter fluctuation effects are important in the spec
heat up to at least 60 K, strongly confirming the above sim
lar and independent conclusion based on our modeling of
magnetic susceptibility data for the same crystals.
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