6,632 research outputs found

    Arbeitsrehabilitative Aspekte in der ergotherapeutischen Behandlung von Handverletzungen

    Get PDF

    Geometry of the ergodic quotient reveals coherent structures in flows

    Full text link
    Dynamical systems that exhibit diverse behaviors can rarely be completely understood using a single approach. However, by identifying coherent structures in their state spaces, i.e., regions of uniform and simpler behavior, we could hope to study each of the structures separately and then form the understanding of the system as a whole. The method we present in this paper uses trajectory averages of scalar functions on the state space to: (a) identify invariant sets in the state space, (b) form coherent structures by aggregating invariant sets that are similar across multiple spatial scales. First, we construct the ergodic quotient, the object obtained by mapping trajectories to the space of trajectory averages of a function basis on the state space. Second, we endow the ergodic quotient with a metric structure that successfully captures how similar the invariant sets are in the state space. Finally, we parametrize the ergodic quotient using intrinsic diffusion modes on it. By segmenting the ergodic quotient based on the diffusion modes, we extract coherent features in the state space of the dynamical system. The algorithm is validated by analyzing the Arnold-Beltrami-Childress flow, which was the test-bed for alternative approaches: the Ulam's approximation of the transfer operator and the computation of Lagrangian Coherent Structures. Furthermore, we explain how the method extends the Poincar\'e map analysis for periodic flows. As a demonstration, we apply the method to a periodically-driven three-dimensional Hill's vortex flow, discovering unknown coherent structures in its state space. In the end, we discuss differences between the ergodic quotient and alternatives, propose a generalization to analysis of (quasi-)periodic structures, and lay out future research directions.Comment: Submitted to Elsevier Physica D: Nonlinear Phenomen

    Precision Measurements of Stretching and Compression in Fluid Mixing

    Full text link
    The mixing of an impurity into a flowing fluid is an important process in many areas of science, including geophysical processes, chemical reactors, and microfluidic devices. In some cases, for example periodic flows, the concepts of nonlinear dynamics provide a deep theoretical basis for understanding mixing. Unfortunately, the building blocks of this theory, i.e. the fixed points and invariant manifolds of the associated Poincare map, have remained inaccessible to direct experimental study, thus limiting the insight that could be obtained. Using precision measurements of tracer particle trajectories in a two-dimensional fluid flow producing chaotic mixing, we directly measure the time-dependent stretching and compression fields. These quantities, previously available only numerically, attain local maxima along lines coinciding with the stable and unstable manifolds, thus revealing the dynamical structures that control mixing. Contours or level sets of a passive impurity field are found to be aligned parallel to the lines of large compression (unstable manifolds) at each instant. This connection appears to persist as the onset of turbulence is approached.Comment: 5 pages, 5 figure

    Severe Respiratory Insufficiency Complicating Epstein-Barr Virus Infection: Case Report and Review

    Get PDF
    We report a case involving a young adult who had life-threatening bilateral pneumonitis in the course of an acute Epstein-Barr virus (EBV) infection. Because of severe hypoxemia, the patient required mechanical ventilation and additional oxygenation by an intravascular oxygenator. The patient was treated with corticosteroids and survived without sequelae. Severe pulmonary involvement associated with EBV infection is a rare but potentially fatal complication of infectious mononucleosis. Similar cases reported in the literature are reviewed, and the therapeutic options for this particular complication are discusse

    A configuration system for the ATLAS trigger

    Full text link
    The ATLAS detector at CERN's Large Hadron Collider will be exposed to proton-proton collisions from beams crossing at 40 MHz that have to be reduced to the few 100 Hz allowed by the storage systems. A three-level trigger system has been designed to achieve this goal. We describe the configuration system under construction for the ATLAS trigger chain. It provides the trigger system with all the parameters required for decision taking and to record its history. The same system configures the event reconstruction, Monte Carlo simulation and data analysis, and provides tools for accessing and manipulating the configuration data in all contexts.Comment: 4 pages, 2 figures, contribution to the Conference on Computing in High Energy and Nuclear Physics (CHEP06), 13.-17. Feb 2006, Mumbai, Indi

    The ALICE Data Quality Control

    Get PDF
    ALICE (A Large Ion Collider Experiment) has undertaken a major upgrade during the Long Shutdown 2. The increase in the detector data rates, and in particular the continuous readout of the TPC, led to a hundredfold increase in the input raw data, up to 3.5 TB/s. To cope with it, a new common Online and Offline computing system, called O2, has been developed and put in production. The online Data Quality Monitoring (DQM) and the offline Quality Assurance (QA) are critical aspects of the data acquisition and reconstruction software chains. The former intends to provide shifters with precise and complete information to quickly identify and overcome problems while the latter aims at selecting good quality data for physics analyses. Both DQM and QA typically involve the gathering of data, its distributed analysis by user-defined algorithms, the merging of the resulting objects and their visualization. This paper discusses the final architecture and design of the Quality Control (QC), which runs synchronously to data taking and asynchronously on the Worldwide LHC Computing Grid. Following the successful first year of data taking with beam, we will present our experience and the lessons we learned, before and after the LHC restart, when monitoring the data quality in a realworld and challenging environment. We will finally illustrate the wide range of usages people make of this system by presenting a few, carefully picked, use cases

    Detecting barriers to transport: A review of different techniques

    Full text link
    We review and discuss some different techniques for describing local dispersion properties in fluids. A recent Lagrangian diagnostics, based on the Finite Scale Lyapunov Exponent (FSLE), is presented and compared to the Finite Time Lyapunov Exponent (FTLE), and to the Okubo-Weiss (OW) and Hua-Klein (HK) criteria. We show that the OW and HK are a limiting case of the FTLE, and that the FSLE is the most efficient method for detecting the presence of cross-stream barriers. We illustrate our findings by considering two examples of geophysical interest: a kinematic meandering jet model, and Lagrangian tracers advected by stratospheric circulation.Comment: 15 pages, 9 figures, submitted to Physica

    Elementa physiologiae corporis humani auctore Alberto v. Haller... : tomus tertius, respiratio vox

    Get PDF
    Port. a dos tintas con grab. xil.Texto con notas a pie de pág.Enc. PielSign.: A-Z4, Aa-Oo4, Aaa-Ooo4, Ppp2, Qqq
    • …
    corecore