1,246 research outputs found

    Thermodiffusion in model nanofluids by molecular dynamics simulations

    Full text link
    In this work, a new algorithm is proposed to compute single particle (infinite dilution) thermodiffusion using Non-Equilibrium Molecular Dynamics simulations through the estimation of the thermophoretic force that applies on a solute particle. This scheme is shown to provide consistent results for simple Lennard-Jones fluids and for model nanofluids (spherical non-metallic nanoparticles + Lennard-Jones fluid) where it appears that thermodiffusion amplitude, as well as thermal conductivity, decrease with nanoparticles concentration. Then, in nanofluids in the liquid state, by changing the nature of the nanoparticle (size, mass and internal stiffness) and of the solvent (quality and viscosity) various trends are exhibited. In all cases the single particle thermodiffusion is positive, i.e. the nanoparticle tends to migrate toward the cold area. The single particle thermal diffusion 2 coefficient is shown to be independent of the size of the nanoparticle (diameter of 0.8 to 4 nm), whereas it increases with the quality of the solvent and is inversely proportional to the viscosity of the fluid. In addition, this coefficient is shown to be independent of the mass of the nanoparticle and to increase with the stiffness of the nanoparticle internal bonds. Besides, for these configurations, the mass diffusion coefficient behavior appears to be consistent with a Stokes-Einstein like law

    Relativistic coupled-cluster single-double method applied to alkali-metal atoms

    Full text link
    A relativistic version of the coupled-cluster single-double (CCSD) method is developed for atoms with a single valence electron. In earlier work, a linearized version of the CCSD method (with extensions to include a dominant class of triple excitations) led to accurate predictions for energies, transition amplitudes, hyperfine constants, and other properties of monovalent atoms. Further progress in high-precision atomic structure calculations for heavy atoms calls for improvement of the linearized coupled-cluster methodology. In the present work, equations for the single and double excitation coefficients of the Dirac-Fock wave function, including all non-linear coupled-cluster terms that contribute at the single-double level are worked out. Contributions of the non-linear terms to energies, electric-dipole matrix elements, and hyperfine constants of low-lying states in alkali-metal atoms from Li to Cs are evaluated and the results are compared with other calculations and with precise experiments.Comment: 12 page

    Why you think Milan is larger than Modena: Neural correlates of the recognition heuristic

    Get PDF
    When ranking two alternatives by some criteria and only one of the alternatives is recognized, participants overwhelmingly adopt the strategy, termed the recognition heuristic (RH), of choosing the recognized alternative. Understanding the neural correlates underlying decisions that follow the RH could help determine whether people make judgments about the RH's applicability or simply choose the recognized alternative. We measured brain activity by using functional magnetic resonance imaging while participants indicated which of two cities they thought was larger (Experiment 1) or which city they recognized (Experiment 2). In Experiment 1, increased activation was observed within the anterior frontomedian cortex (aFMC), precuneus, and retrosplenial cortex when participants followed the RH compared to when they did not. Experiment 2 revealed that RH decisional processes cannot be reduced to recognition memory processes. As the aFMC has previously been associated with self-referential judgments, we conclude that RH decisional processes involve an assessment about the applicability of the RH

    Spectroscopy of Ultracold, Trapped Cesium Feshbach Molecules

    Full text link
    We explore the rich internal structure of Cs_2 Feshbach molecules. Pure ultracold molecular samples are prepared in a CO_2-laser trap, and a multitude of weakly bound states is populated by elaborate magnetic-field ramping techniques. Our methods use different Feshbach resonances as input ports and various internal level crossings for controlled state transfer. We populate higher partial-wave states of up to eight units of rotational angular momentum (l-wave states). We investigate the molecular structure by measurements of the magnetic moments for various states. Avoided level crossings between different molecular states are characterized through the changes in magnetic moment and by a Landau-Zener tunneling method. Based on microwave spectroscopy, we present a precise measurement of the magnetic-field dependent binding energy of the weakly bound s-wave state that is responsible for the large background scattering length of Cs. This state is of particular interest because of its quantum-halo character.Comment: 15 pages, 12 figures, 4 table

    The origin of hysteresis in resistive switching in magnetite is Joule heating

    Full text link
    In many transition metal oxides the electrical resistance is observed to undergo dramatic changes induced by large biases. In magnetite, Fe3_3O4_4, below the Verwey temperature, an electric field driven transition to a state of lower resistance was recently found, with hysteretic current-voltage response. We report the results of pulsed electrical conduction measurements in epitaxial magnetite thin films. We show that while the high- to low-resistance transition is driven by electric field, the hysteresis observed in IVI-V curves results from Joule heating in the low resistance state. The shape of the hysteresis loop depends on pulse parameters, and reduces to a hysteresis-free "jump" of the current provided thermal relaxation is rapid compared to the time between voltage pulses. A simple relaxation time thermal model is proposed that captures the essentials of the hysteresis mechanism.Comment: 7 pages, 6 figure

    Lifetime Measurement of the 6s Level of Rubidium

    Full text link
    We present a lifetime measurements of the 6s level of rubidium. We use a time-correlated single-photon counting technique on two different samples of rubidium atoms. A vapor cell with variable rubidium density and a sample of atoms confined and cooled in a magneto-optical trap. The 5P_{1/2} level serves as the resonant intermediate step for the two step excitation to the 6s level. We detect the decay of the 6s level through the cascade fluorescence of the 5P_{3/2} level at 780 nm. The two samples have different systematic effects, but we obtain consistent results that averaged give a lifetime of 45.57 +- 0.17 ns.Comment: 10 pages, 9 figure

    Collisional relaxation of Feshbach molecules and three-body recombination in 87Rb Bose-Einstein condensates

    Full text link
    We predict the resonance enhanced magnetic field dependence of atom-dimer relaxation and three-body recombination rates in a 87^{87}Rb Bose-Einstein condensate (BEC) close to 1007 G. Our exact treatments of three-particle scattering explicitly include the dependence of the interactions on the atomic Zeeman levels. The Feshbach resonance distorts the entire diatomic energy spectrum causing interferences in both loss phenomena. Our two independent experiments confirm the predicted recombination loss over a range of rate constants that spans four orders of magnitude.Comment: 4 pages, 3 eps figures (updated references

    Time evolution of Matrix Product States

    Full text link
    In this work we develop several new simulation algorithms for 1D many-body quantum mechanical systems combining the Matrix Product State variational ansatz with Taylor, Pade and Arnoldi approximations to the evolution operator. By comparing all methods with previous techniques based on Trotter decompositions we demonstrate that the Arnoldi method is the best one, reaching extremely good accuracy with moderate resources. Finally we apply this algorithm to studying the formation of molecules in an optical lattices when crossing a Feschbach resonance with a cloud of two-species hard-core bosons.Comment: More extensive comparison with all nearest-neighbor spin s=1/2 models. The results in this manuscript have been superseded by a more complete work in cond-mat/061021

    Power-Based Droop Control in DC Microgrids Enabling Seamless Disconnection From Upstream Grids

    Get PDF
    This paper proposes a local power-based droop controller for distributed energy resource converters in dc microgrids that are connected to upstream grids by grid-interface converters. During normal operation, the grid-interface converter imposes the microgrid bus voltage, and the proposed controller allows power flow regulation at distributed energy resource converters\u2019 output. On the other hand, during abnormal operation of the grid-interface converter (e.g., due to faults in the upstream grid), the proposed controller allows bus voltage regulation by droop control. Notably, the controller can autonomously convert from power flow control to droop control, without any need of bus voltage variation detection schemes or communication with other microgrid components, which enables seamless transitions between these two modes of operation. Considering distributed energy resource converters employing the power-based droop control, the operation modes of a single converter and of the whole microgrid are defined and investigated herein. The controller design is also introduced. Furthermore, the power sharing performance of this control approach is analyzed and compared with that of classical droop control. The experimental results from a laboratory-scale dc microgrid prototype are reported to show the final performances of the proposed power-based droop control
    corecore